
GigaScience , 2023, 12 , 1–13 

DOI: 10.1093/gigascience/giad093 

Research 

Finding haplotypic signatures in proteins 
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Abstract 

Bac kgr ound: The nonr andom distribution of alleles of common genomic variants produces haplotypes, which are fundamental in 

medical and population genetic studies. Consequentl y, pr otein-coding genes with different co-occurring sets of alleles can encode 
different amino acid sequences: protein haplotypes. These protein haplotypes are present in biological samples and detecta b le by 
mass spectr ometr y, but they ar e not accounted for in proteomic sear c hes. Consequentl y, the impact of haplotypic v ariation on the 
results of proteomic sear c hes and the discoverability of peptides specific to haplotypes remain unknown. 

F indings: Here , w e stud y ho w common genetic haplotypes influence the proteomic sear c h space and investigate the possibility to 
match peptides containing multiple amino acid substitutions to a publicly available data set of mass spectra. We found that for 
12.42% of the discov era b le amino acid substitutions encoded by common haplotypes, 2 or more substitutions may co-occur in the 
same peptide after tryptic digestion of the protein haplotypes. We identified 352 spectra that matched to such m ulti v ariant pe ptides, 
and out of the 4,582 amino acid substitutions identified, 6.37% were covered by multivariant peptides. However, the evaluation of 
the r elia bility of these matches r emains challeng ing, sugg esting that r efined err or rate estimation pr ocedur es ar e needed for such 

complex proteomic sear c hes. 

Conclusions: As these pr ocedur es become av aila b le and the a bility to anal yze pr otein haplotypes incr eases, we anticipate that pr o- 
teomics will provide new information on the consequences of common variation, across tissues and time. 

Ke yw or ds: proteogenomics, haplotype , protein, bioinformatics, post-tr anslational modification 
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Bac kgr ound 

Linkage disequilibrium (LD) describes the nonrandom correla- 
tion between alleles at different positions in the genome in a 
population. LD arises when alleles at nearby sites co-occur on 

the same haplotype more often than expected by chance. When 

ha plotypes ar e located in pr otein-coding portions of the genome 
and include nonsynonymous changes, they can alter protein 

sequences, forming so-called protein haplotypes, as defined by 
Spooner et al. [ 1 ]. Based on the co-occurrence of alleles in the 
1000 Genomes Project [ 2 ] and their in silico translation, Spooner 
et al. [ 1 ] created a list of possible protein haplotype sequences.
Notabl y, they str ess that for 1 in 7 genes, the most frequent pro- 
tein haplotype differs from the reference sequence in Ensembl 
[ 3 ]. In precision medicine, probing the proteotype—the actual 
state of the proteome—adds valuable information concerning 
the relationship between the genotype and the phenotype [ 4 ].
Ther efor e, it is important that genetic information, including LD,
is taken into account in proteomics searches. 

Proteins in biological samples can be identified by liquid 

c hr omatogr a phy coupled to mass spectr ometry (LC-MS), usuall y 
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the original work is pr operl y cited. 
fter digestion into peptides [ 5 ]. Then, the measur ed spectr a ar e
atched to a database of expected protein sequences using a

earch engine [ 6 ]. The identified peptides are used to infer the
r esence of pr oteins [ 7 ] along with potential posttranslational
odifications (PTMs) [ 8 ]. When the peptides cover the relevant

arts of the protein sequences, it is also possible to discover
he product of alternative splicing or genetic variation [ 9 ]. In
r ecision medicine, pr oteomic searc hes need to be ada pted to

ndividual patient profiles by extending the search space to 
nclude noncanonical sequences [ 10 ]. 

This challenge is addressed by proteogenomics—the scientific 
eld integrating genomics and proteomics into a joint approach 

 9 , 11 ]. Recent work, mainl y in the domain of cancer r esearc h, has
hown that accounting for genetic variation in pr oteomic anal y-
es provides the means to discover noncanonical proteins. Umer 
t al. [ 12 ] have developed a tool to generate databases of variant
r oteins deriv ed fr om single-nucleotide pol ymor phisms (SNPs),

nsertions and deletions, and the 3-frame translation of pseudo- 
enes and noncanonical tr anscripts, a ppended with a database 
f canonical proteins [ 12 ]. Levitsky et al. [ 13 ] use measures of
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Figure 1: (A) Proteome cov er a ge expr essed in terms of the percenta ge of amino acids; that is, if 7 out of 100 r esidues belong to at least 1 discov er able 
peptide containing the product of a substitution, we say that 7% of the proteome maps to peptides containing variation. See main text for details and 
Materials and Methods for the handling of shared peptides. (B) Example of a reference sequence aligned to another haplotype . T he classes of peptides 
following the cleav a ge pattern of trypsin are highlighted by a colored background. Three amino acid substitutions encoded by this haplotype are 
marked by red rectangles . T he “co verage” la yer indicates the alignment applied to obtain numbers shown in section A. (C) Distribution of variation in 
discov er able peptides. Amino acid variants are stratified based on the category of peptide in which the substitution caused by the respective variant 
can be identified. 
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r oteome cov er a ge, including v ariant peptides, to v erify the pr es-
nce of single amino acid variants. Choong et al. [ 14 ] proposed an
lgorithm to generate the optimal number of protein sequences
ontaining combinations of amino acid substitutions possibly
ccurring in the same tryptic peptide. In their a ppr oac h, the
atabase includes not only the combinations of alleles encoded
y haplotypes but all combinations possible per peptide. Lobas
t al. [ 15 , 16 ] sho w ed that peptides containing variation were 2.5
o 3 times less likely to be identified than canonical peptides.

ang et al. [ 17 ] have analyzed data for 29 paired healthy human
issues from the Human Proteome Atlas project to detect amino
cid variants at the protein level. Ho w ever, the majority of amino
cid variants predicted from exome sequencing could not be
etected [ 17 ], suggesting that proteogenomics remains highly
hallenging and methods for discovering noncanonical proteins
eed further de v elopment. 

Here, we used the protein haplotypes generated by Spooner
t al. [ 1 ] to e v aluate the ability of mass spectrometry–based pro-
eomics to identify peptides encoded by combinations of variants
n LD. We show that in some pr otein ha plotypes, m ultiple amino
cid substitutions affect the same peptide after digestion. Those
r otein ha plotypes can onl y be identified if the combinations of
mino acid variants are included in the search space, and sev-
ral of these protein haplotypes are predicted to be more common
han the r efer ence sequence . T hen, we mined the publicly a vail-
ble data from Wang et al. [ 17 ] for peptides including a combina-
ion of amino acid v ariants, demonstr ating how such peptides can
e identified according to the standards of the field but also how
he quality control of the results remains challenging. 
esults 

he consequence of haplotypes on the 

roteomics search space 

e digested in silico the protein sequences tr anslated fr om ha plo-
ypes obtained from Spooner et al. [ 1 ] using the canonical cleav-
ge pattern of trypsin, allowing for up to 2 missed cleav a ges. Note
hat indels were not considered, and we focused only on common
ariants with a minor allele frequency > 1% in any population of
he 1000 Genomes Project [ 2 ]; see Materials and Methods for de-
ails . After excluding contaminants , this yielded 2,647,815 unique
ryptic peptide sequences of length between 8 and 40 amino acids
Fig. 1 A). T he co v er a ge of pr otein sequences fr om Ensembl can
e partitioned as follows: 80.73% can only be covered by canoni-
al peptides, 7.82% map to peptides that may contain 1 or multi-
le amino acid substitutions, and the remaining yields sequences
hat are either too short or too long to be identified. Most pep-
ides discov er able in pr oteomic studies ther efor e ma p to canoni-
al sequences, making it challenging for nontargeted approaches
o assess the allelic status of a common genetic variant using pro-
eomics, in a gr eement with [ 15 , 16 ]. 

We classify the obtained peptide sequences in 3 types (Fig. 1 B):
i) canonical, no haplotype is known to yield an amino acid sub-
titution in the sequence of this peptide; (ii) single-variant, a hap-
otype encodes an amino acid substitution in the sequence of
his peptide; and (iii) m ultiv ariant, a ha plotype encodes a set of
 or more amino acid substitutions in the sequence of this pep-
ide. In total, common haplotypes encode 102,595 amino acid
ubstitutions, with 87.58% of them found only in single-variant
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Figure 2: Classification of peptides based on their ability to distinguish between protein sequences (bar color) and to identify amino acid substitutions 
(position on x-axis). The height of the bars r epr esents the distribution of categories (nonspecific, protein-specific, proteoform-specific) among the 
peptide types (canonical, single-variant, multivariant). 

 

Table 1: Classification of peptides types and the number of in silico 
digested peptides in each of the categories 

Peptide type 
(v aria tion) 

Peptide type 
(specificity) 

Number of 
possible peptides 

Canonical Proteoform-specific 291,400 
Canonical Protein-specific 1,949,615 
Canonical Nonspecific 196,255 
Single-variant Proteoform-specific 47,583 
Single-variant Protein-specific 147,308 
Single-variant Nonspecific 1,652 
Multivariant Proteoform-specific 4,282 
Multivariant Protein-specific 9,581 
Multivariant Nonspecific 139 
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peptides, 2.39% in m ultiv ariant peptides, and 10.03% in either 
single- or m ultiv ariant pe ptides de pending on the n umber of 
missed cleav a ges (Fig. 1 C). Note that substitutions in different iso- 
forms of the same protein are re ported se parately by Spooner 
et al. [ 1 ], cr eating m ultiple consequences for the same genetic 
variant. The total number of amino acid substitutions is con- 
sequently higher than the number of genetic variants. Interest- 
ingly, based on the frequencies among all participants in the 1000 
Genomes project, 22.3% and 32.4% of the amino acid substitu- 
tions discov er able in single-v ariant and m ultiv ariant peptides, r e- 
spectiv el y, occur in pr otein ha plotypes that ar e pr edicted to be 
mor e fr equent than the Ensembl r efer ence sequence. If these alle- 
les are not accounted for, proteomics analyses will, therefore, not 
be able to identify these parts of the genome for the majority of 
individuals. 

Peptides can be classified based on their ability to distinguish 

between protein sequences. We propose the following categories: 
(i) nonspecific peptides map to the products of different genes; (ii) 
protein-specific peptides map to multiple sequences, which are all 
products of the same gene; and (iii) proteoform-specific peptides 
ma p uniquel y to a single form of a pr otein (i.e., single splice v ari- 
ant and ha plotype), r eferr ed to as proteoform [ 18 ]. In this classi- 
fication, based on the identification of a proteoform-specific pep- 
tide, one can uniquely identify products of a given gene. A protein- 
specific peptide allows for discriminating certain groups of pro- 
teoforms but does not yield a single candidate sequence (e.g., it 
determines which amino acid substitution is present but maps 
to multiple splicing variants). Nonspecific peptide sequences map 

to multiple genes, where the sequence of 1 gene matches the se- 
quence of another, making it challenging to infer which protein is 
cov er ed. We found 198,046 distinct nonspecific peptide sequences,
covering up to 17.53% of the proteome . T he prevalence of canon- 
ical, single-v ariant, and m ultiv ariant peptides among the above 
introduced types is displayed in Fig. 2 , with exact numbers pro- 
ided in Table 1 . As expected intuitiv el y, peptides containing the
roduct of 1 or multiple variants present a higher ability to dis-
inguish between pr otein pr oducts of different genes and between
roteoforms of the same gene. 

atc hing m ulti variant peptides to mass spectra 

o investigate the prevalence of spectra matching multivariant 
eptides encoded by common haplotypes and the quality of the
btained matches, we searched the deep proteomics data of 
ealthy tonsil tissue made available by Wang et al. [ 17 ] against the
equences of common pr otein ha plotypes using X!Tandem [ 19 ]
s a search engine without refinement procedure and P er colator
 20 ] with standard features for the evaluation of the confidence
n all peptide-to-spectrum matc hes (PSMs). The r esulting PSMs
er e thr esholded at a 1% PSM-le v el false discov ery r ate (FDR).
ote that because our study focuses on e v aluating the quality of

he spectrum matches, a PSM-level FDR was therefore preferred to
eptide-le v el statistics. After thr esholding, 1,318,152 tar get PSMs
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emained (13,467 decoy PSMs would have passed the threshold),
 epr esenting 176,193 unique peptide sequences (8,047 decoy pep-
ide sequences would have passed the threshold), covering the al-
ernative amino acid of 4,582 substitutions . T he distribution of al-
ernative alleles among single- and m ultiv ariant peptides (Fig. 3 A)

irr or ed the values obtained from the in silico digestion of protein
a plotypes (Fig. 1 C). On av er a ge, the pr oducts of 2,249.67 substi-
utions were found per sample (2,360, 2,165, and 2,224 in samples
, 2, and 3, r espectiv el y). The matc hed peptide sequences cov er
1.56% of the proteome predicted to map exclusively to canonical
eptides and 16.89% of the proteome possibly mapping to pep-
ides with substitutions (Fig. 3 B). Note, ho w e v er, that 19,678 pep-
ide sequences (identified in 231,181 PSMs) map to the products of

ultiple genes that cannot be distinguished, hence affecting the
ov er a ge estimates. 

Out of the 1,318,152 spectra matched to peptides, 0.57% were
atc hed to single-v ariant peptides and 0.03% wer e matc hed to
 ultiv ariant peptides . T he share of spectra matched to variant

eptides is thus lo w er than the expected error rate, and cur-
 entl y, no method allows the e v aluation of err or r ates in these
ubgr oups of matc hes specificall y. We thus inv estigated whether
hese classes of peptides sho w ed signs of an ov err epr esentation
f false-positive matches. No substantial difference was notice-
ble in the density of the posterior error probabilities (PEPs) and
 -values for all 3 classes of PSMs (Fig. 3 C, D), indicating that a more
tringent FDR threshold would not alter the prevalence of variant
eptides. We also compared the observed peptide retention time
nd fr a gmentation with pr edictions fr om DeepLC [ 21 ] and MS2PIP
 22 ], r espectiv el y. Ov er all, the density of the distance to prediction
n both retention time and fr a gmentation was v ery similar for all
 classes of peptides (Fig. 3 E, F), displaying no obvious shift in the
istribution, whic h would hav e been indicativ e of a str ong ov er-
 epr esentation of false positives. Yet the distributions of variant
nd m ultiv ariant peptides sho w ed stronger tails to w ar d high dis-
ance to pr ediction compar ed to nonvariant pe ptides, indicati ve
f the presence of false-positive matches. In comparison, the dis-
ance to prediction for deco ys sho w ed high retention time differ-
nce and low spectrum similarity. 

Quality metrics on all matc hes ar e av ailable as supplemen-
ary material. Three examples, sampled from the multivariant

atches passing the FDR threshold at low, medium, and high PEP,
 epr esenting high, medium, and low confidence, r espectiv el y, ar e
isplayed in Fig. 4 along with the predicted spectra. As expected,
he share of peaks matching predicted fragment ions decreases
s the PEP increases: (A) the highly confident match presents an
xcellent cov er a ge of the spectrum with fr a gment ion masses,
ith an extensive mapping of the peptide y-ion series; the re-

ention time distance to prediction of 320.8 seconds r epr esents
nly a fraction of the gradient (approximately 2.5 hours); and the
pectrum similarity to prediction, 0.79, shows good but not per-
ect a gr eement, whic h is in the lo w er range of the distribution
f similarity scores for the canonical matches . (B) T he medium
onfidence match presents a good coverage of the spectrum lack-
ng prediction for many peaks, and the agreement scores with
etention time and fragmentation predictions are excellent. (C)
he low confidence matc h pr esents a poor cov er a ge of the spec-
rum with poor a gr eement with retention time and fr a gmentation
redictions. In addition to passing commonly accepted statistical
hr esholds, the matc hes in Fig. 4 A and B would pass expert qual-
ty control. On the other hand, the match in 4C is most probably
 false positive. Together, while these 3 sampled PSMs r epr esent
nly a limited set of examples, they are very re presentati ve of the
ifficulty to confidently assess the presence of individual peptides
r om lar ge pr oteomic experiments . T his task is , ho w e v er , impor -
ant given that chimeric spectrum matches [ 23–26 ] and partial

atc hes ar e known to be difficult to account for in err or r ate es-
imation [ 27 , 28 ]. 

As highlighted by Spooner et al. [ 1 ], depending on the pop-
lation studied, specific haplotypes often have higher frequen-
ies than the canonical haplotype by Ensembl. For example, there
r e 5 ha plotypes of the IQ motif containing the GTP ase activ at-
ng protein 2 (IQGAP2, ENSP00000274364) gene that have higher
r edicted fr equencies than the canonical ha plotype in the Eu-
opean population (with combined frequency of 84.9% accord-
ng to Spooner et al. [ 1 ]). These haplotypes encode a tryptic pep-
ide containing 2 amino acid substitutions when compared to
he canonical sequence in Ensembl: VL WLDEIQQA VD E ANVD E DR
amino acid substitutions in bold). At position 527 of the pro-
ein sequence, aspartic acid is changed to glutamic acid (527D > E,
s2431352), and at position 532, lysine is changed to glutamic
cid (532K > E, rs2909888), pr e v enting cleav a ge by trypsin. In our
esults , 2 peptides o verlapped with this sequence, 1 featuring a

issed cleav a ge, supported by 13 and 10 spectr a, r espectiv el y.
ig. 4 D and E display 2 examples of highl y confident matc hes,
nd Supplementary Table S1 lists PEP, q -value, and agreement
ith predictors for all PSMs. Altogether, the PEPs and a gr eement
ith predictors for these PSMs support the identification of this

equence and thus the presence of these haplotypes in the data
eported by Wang et al. [ 17 ], consistent with the frequencies of
hese haplotypes in the European population. The sequence en-
oded by these haplotypes cannot be detected using canonical
atabases. 

For diploid c hr omosomes, in the absence of deletion or copy
umber alter ation, eac h individual carries 2 versions of a given
ene—1 paternally and 1 maternally inherited—which can rep-
 esent differ ent ha plotypes. We thus expect to find evidence for
eterozygosity in some of the identified variants. We have come
cr oss suc h cases in 26, 21, and 19 genes in samples 1, 2, and 3, re-
pectiv el y. For example, the protein CR1 (complement component
3b/4b] receptor 1, ENSP00000356016) is commonly affected by

ultiple SNPs. First, at the position 2060, threonine is commonly
hanged to serine (2060T > S, rs4844609). Haplotypes including ser-
ne at position 2060 are expected in the European population with
he combined frequency of 98%. Second, at the position 2065,
soleucine can be changed to v aline (2065I > V, rs6691117); v aline is
xpected in the European population with a frequency of 22.57%.
o w e v er, a v aline at position 2065 is onl y expected when pr eceded
y a serine at position 2060. In one of the samples, we identi-
ed spectr a matc hing confidentl y to both a m ultiv ariant peptide
ncoded by both alternative alleles (SFF S LTEI V R, substitutions in
old) and to a single-variant peptide encoded by the alternative
llele of the first SNP (SFF S LTEIIR, substitution in bold). Mirr or ed
pectra and associated quality metrics are shown in Fig. 5 . In this
ase, including haplotypes in the protein database enables the
dentification of not only the alternative but also the reference
llele of a variant. 

While including the sequences from different haplotypes offers
he ability to detect ne w pr otein ha plotypes, it also incr eases the
ikelihood of similar peptides to map to different proteins. For ex-
mple, the protein POTE ankyrin domain family member I (POTEI,
NSP00000392718) contains in its most frequent haplotype 8
mino acid substitutions, 2 of which fall into the same tryptic
eptide. In the actin-like domain of POTEI at position 918, tyrosine
 hanges to phen ylalanine (918Y > F, rs147268452), and at position
29, methionine changes into threonine (929M > T, rs201878083),
hus encoding the peptide LCFVALDFEQEMA T AASSSSLEK

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad093#supplementary-data
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Figure 3: A: Cov er a ge of the proteome by identified peptides, stratified by the possibility to contain variation. Lighter shades indicate the coverage by 
predicted pe ptides, dark er shades re present the actual coverage by identified peptides. B: Distribution of variation in identified peptides. Amino acid 
v ariants ar e str atified based on the category of peptide in which the substitution caused by the r espectiv e v ariant can be identified. C-F: Distribution of 
four confidence measures among PSMs for peptide categories: posterior error probability (PEP), q-value, difference between observed and predicted 
retention time, and angular similarity between the observed and predicted spectrum. Decoy PSMs for this comparison were thresholded to 1% 

PSM-le v el FDR. 
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(Table 2 ). The frequency of this haplotype among participants 
of the European population in the 1000 Genomes project is 46%,
while in this population, the a ggr egated fr equency of all haplo- 
types not containing any of these substitutions is 1.98%. Ho w e v er,
the sequence of the corresponding region of POTEI is highly simi- 
lar to the sequence of actin beta (ACTB), actin gamma 1 (ACTG1),
nd actin alpha 1 (ACTA1), differing in 1, 1, and 2 r esidues, r espec-
iv el y. Suc h highl y similar sequences r epr esent peptides differing
n their composition by only a few atoms, a mass difference that
an be indistinguishable from a chemical or posttranslational 
odification (e.g., a chemical modification of methionine can 

e mistaken for a substitution of methionine to threonine [ 29 ]).



6 | GigaScience , 2023, Vol. 12, No. 1 

Figure 4: Quality control metrics and spectra of 5 multivariant PSMs. Amino acid substitutions are marked in bold. PSM A is among the 10% 

top-scoring matches to multivariant peptides by posterior error probability, B scores as the median value, and C is the lo w est-scoring match to a 
m ultiv ariant peptide. PSMs D and E are within the 5 top-scoring matches for the most common haplotype of IQGAP2. The posterior error probability as 
obtained from P er colator is listed along with retention time difference to prediction as obtained from DeepLC and spectrum similarity with prediction 
as obtained from MS2PIP. The intensity of the measured spectrum is plotted (top; blue, pink, and gray) with the scaled predicted intensity mirrored 
(bottom; green and red). Peaks in the measured spectrum matching predictions are highlighted in blue, measured peaks matching an ion with a 
missing intensity prediction are highlighted in pink, and other measured peaks are plotted in gray. Note that in this representation, peaks matching a 
fr a gment ion with a predicted intensity of zero will not be annotated. 
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Figure 5: Quality control metrics and spectra for PSMs matching both the r efer ence (A) and the alternative (B) allele in the same sample . T he posterior 
err or pr obability as obtained fr om P er colator is listed along with r etention time differ ence to pr ediction as obtained fr om DeepLC and spectrum 

similarity with prediction as obtained from MS2PIP. The intensity of the measured spectrum is plotted (top; blue, pink, and gray) with the scaled 
predicted intensity mirrored (bottom; green and red). Peaks in the measured spectrum matching predictions are highlighted in blue, measured peaks 
matching an ion with a missing intensity prediction are highlighted in pink, and other measured peaks are plotted in gray. Note that in this 
r epr esentation, peaks matc hing a fr a gment ion with a pr edicted intensity of zer o will not be annotated. 

Table 2: PSMs mapping to the 5 highly similar protein sequences: 
actin gamma 1 (ACTG1)/actin beta (ACTB), actin alpha 1 (ACTA1), 
and 3 haplotypes of POTEI. REF marks the canonical sequence. 
We specify the number of confident PSMs matching the sequence 
of interest and number of samples with any spectra matching to 
these peptides. 

Protein haplotype 
Peptide 

sequence 

No. of 
confident 

PSMs 

ACTG1: REF 
LC Y VALDFE Q EMA T AASSSSLEK 3,298 

ACTB: REF 
ACTA1: REF LC Y VALDFE N EMA T AASSSSLEK 385 
POTEI: REF LC Y VALDFE Q EMA M AASSSSLEK 103 
POTEI: 918Y > F,929M > T LC F VALDFE Q EMA T AASSSSLEK 19 
POTEI: 918Y > F LC F VALDFE Q EMA M AASSSSLEK 18 
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Ther efor e, telling these 2 pr oteins a part can be extr emel y 
challenging when accounting for variants . Con versely, if only 
canonical sequences are included in the database, the spectra ob- 
tained from POTEI will be arbitrarily assigned to actin. Numbers 
of spectr a matc hing the corr esponding r egions of these pr oteins 
are listed in Table 2 . Matching spectra to each of the peptide 
sequences in Table 2 have been identified in all 3 samples. 

The need to distinguish very similar sequences makes the 
use of haplotype-specific databases particularly sensitive to the 
spectrum identification strategy. As an example, we conducted 

the searc h a gain after enabling the r efinement pr ocedur e of 
X!Tandem. This pr ocedur e is a m ultistep a ppr oac h that selects a 
limited set of proteins for a secondary search with different search 

par ameters, including mor e modifications and relaxing thresh- 
olds (e.g., in terms of missed cleav a ges). While this pr ocedur e 
r esents the adv anta ge to quic kl y scan for ne w pe ptides, it mak es
he e v aluation of matc hes c hallenging [ 30 ] and incr eases the like-
ihood to encounter cases where a modification can be mistaken
or an amino acid substitution and vice versa. Fig. 6 shows such
n example of 2 matches to the same spectrum, obtained using
he r efinement pr ocedur e: 1 peptide contains the product of the
lternative allele of 2 variants (Fig. 6 A) while the other has the
roduct of the reference allele for 1 of the variants with a mod-

fication on the N-terminus compensating the mass difference 
Fig. 6 B). Both matches show a good matching of the higher-mass
eaks and good a gr eements with the predictors but a high pr e v a-

ence of unmatched peaks. Based on their scores, both matches
ould pass a 1% FDR threshold, but the similarity between the

equences makes it challenging to assess whether 1 or the other
aplotype is a better match. This example shows the difficulty
o distinguish variant peptides when the amino acid substitu- 
ion has a mass difference equal or very similar to a modifica-
ion. Ov er all, we observ ed inflated identification r ates for m ul-
i variant pe ptides using the r efinement pr ocedur e (1,060 PSMs
ith refinement vs. 342 PSMs without). For example, without the
 efinement pr ocedur e, 19 spectr a matc hed the m ultiv ariant se-
uence of POTEI among the PSMs passing a 1% FDR threshold

Table 1 ); with the r efinement pr ocedur e, the r esults contained
13 matc hing spectr a. Fr om the 94 additional matches, we sus-
ect that man y corr espond to other sequences that were artifac-
uall y matc hed to this sequence, possibl y thr ough the addition of

odifications. 
Err or r ates deriv ed fr om the tar get-decoy str ategy r el y on the

odeling of the null distribution of scores using random matches.
istinguishing a variant peptide from a modified one, ho w ever, re-
uir es telling a part 2 matc hes that ar e v ery similar and both bet-
er than random. In such cases, it is expected that modeling the
ull distribution using random matches provides underestimated 
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Figure 6: Comparison between predicted spectra for 2 different peptides matched to the same observed spectrum. The posterior error probability as 
obtained from P er colator is listed along with retention time difference to prediction as obtained from DeepLC and spectrum similarity with prediction 
as obtained from MS2PIP. The intensity of the measured spectrum is plotted (top; blue, pink, and gray) with the scaled predicted intensity mirrored 
(bottom; green and red). Peaks in the measured spectrum matching predictions are highlighted in blue, measured peaks matching an ion with a 
missing intensity prediction are highlighted in pink, and other measured peaks are plotted in gray. Numbers in the peptide sequence are identifiers of 
posttranslational modifications in UniMod [ 31 ]. 
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rr or r ates, and additional quality contr ol measur es can be a p-
lied to assess the quality of the matches [ 32 ]. We submitted the
 ariant matc hes passing the tar get-decoy 1% FDR thr eshold in the
!Tandem search without the refinement procedure to PepQuery,
 targeted peptide search engine providing additional validation
or variant peptides identified using proteomics [ 33 ]. PepQuery
ound that a substantial share of the matc hes wer e low scoring or
ould also match another peptide (10% and 11% of the matches,
 espectiv el y), and the pr e v alence of these matc hes decr eased with
he PEP (Fig. 7 A). Conv ersel y, 47% of the matc hes wer e labeled
s confident, and the pr e v alence of confident matches increased
ith the PEP. The r emaining matc hes wer e labeled as possibl y
atching a modification not considered in the original search—a

 ar e posttr anslational modification or an artifact intr oduced dur-
ng sample pr epar ation. Inter estingl y, the pr e v alence of suc h am-
iguous matches was stable around 30% across PEP bins . T hese
esults highlight the difficulty posed by modifications in the con-
dent identification of variant peptides. In the case of highly sim-

lar expected spectra between a variant and a modified peptide,
nalysts need to rely on prior knowledge on the likelihood of find-
ng a given allele or modification in the sample studied or on the
r esence of dia gnostic ions (Fig. 8 ). In the example of Fig. 8 B, the
etection of y29 ++ would advocate in favor of the variant peptide
ather than the modified peptide, but this peak is of low intensity
nd ther efor e r epr esents onl y thin e vidence. 

Mor eov er, w e sear c hed all spectr a a gain using the searc h en-
ine Tide [ 34 ], using the same parameters. Out of the 7,988 con-
dent variant matches given by X!Tandem, 3,604 (45.12%) were
onfirmed by Tide. For 4,314 (54%) v ariant PSMs r eported by
!Tandem, the spectra were not confidently matched to any pep-

ide by Tide . T he remaining 70 spectra were confidently matched
o another peptide by Tide—in 51 cases to a canonical peptide, in
2 cases to a decoy peptide sequence, in 4 cases to a variant pep-
ide encoded by a different haplotype but coming from the same
ene, and in 3 cases to a contaminant. 

onclusion and Discussion 

n this study, we propose to take adv anta ge of the correlation be-
ween alleles through linkage disequilibrium to allow for the iden-
ification of peptides containing multiple linked amino acid sub-
titutions , hence a voiding the computation of all possible combi-
ations of alleles [ 14 ]. Co-occurring alleles in the protein-coding
egions of a gene yield specific protein sequences—protein haplo-
ypes. Building upon pr e vious work in pr oteogenomics, we cr eated
 search space of protein haplotypes. We observe that 7.82% of the
hole pr oteome ma ps to peptides that can contain an amino acid

ubstitution, and up to 12.42% of all discov er able substitutions are
ocated in peptides wher e m ultiple substitutions co-occur (multi-
ariant peptides). These cases suggest that linkage disequilibrium
etween alleles resulting in amino acid substitutions should be

ncluded in a proteomics search space when identifying common
 ariation. Subsequentl y, we performed a r eanal ysis of 3 samples
f healthy tonsil tissue provided by Wang et al. [ 17 ]. We iden-
ified peptides encoded by haplotypes containing 4,582 unique
mino acid substitutions compared to the r efer ence sequences
f Ensembl, 6.37% of which were found only in multivariant
eptides. 

Although searching haplotype-specific sequences allows for
he discovery of novel peptides that match to protein haplotypes,
umer ous c hallenges still r emain. Of the pr edicted ha plotypes,
8.23% contain only substitutions, and the remaining haplotypes
ontain other types of pol ymor phisms (insertions , deletions , or
ol ymor phisms intr oducing or r emo ving a stop codon). T hese can-
ot be detected using the sequences obtained from Haplosaurus.
or eov er, with the intr oduction of ha plotypes, the searc h space
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Figure 7: Analysis of variant peptides passing a target-decoy 1% FDR threshold using PepQuery. (A) Histogram of the PSM type according to PepQuery. 
Low score: the match was not further investigated by PepQuery due to a low score; Ambiguous peptide: the spectrum could be matched to a reference 
peptide at a similar score; Ambiguous modification: the spectrum could be matched to a reference peptide at a similar score when accounting for a 
modification that was not included in the original search; Confident: the match passed all PepQuery validation filters. (B) Mirrored annotated spectra 
obtained using PDV [ 35 ] of a variant PSM with better match when accounting for a modification not included in the search, here a dioxydation of 
tryptophan. 

Figure 8: Comparison between predicted spectra as obtained from MS2PIP for 2 different peptides matched to the same observed spectrum. (A) 
Peptide candidate suggested by PepQuery is a canonical sequence with a modification. (B) Peptide candidate suggested in our search is a variant 
peptide. We list the retention time difference to prediction as obtained from DeepLC. The intensity of the measured spectrum is plotted (top; blue, 
pink, and gray) with the scaled predicted intensity mirrored (bottom; green and red). Peaks in the measured spectrum matching predictions are 
highlighted in blue, measured peaks matching an ion with a missing intensity prediction are highlighted in pink, and other measured peaks are 
plotted in gray. Numbers in the peptide sequence are identifiers of posttranslational modifications in UniMod [ 31 ]. 
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consists of a large number of proteoforms with a high degree of 
similarity, making it challenging to infer which proteoform has 
been identified. Amino acid substitutions of a mass difference 
equal to a posttranslational or chemical modification are partic- 
ularl y c hallenging, as their distinction r elies on the detection of 
few specific ions . T his implies that searching without the correct 
haplotype or modification will generate incorrect sequences or 
modifications that are not caught by current error rate estimation 

str ategies. Ev en worse, using the wrong haplotype on a protein se- 
quence can result in a match in another pr otein. The pr e v alence 
of such errors in published proteomic datasets is currently un- 
known. 
The dataset of pr otein ha plotypes pr ovided by Spooner et al. [ 1 ]
as created using the genome assembly version GRCh37, which is
ow deprecated by Ensembl. During PepQuery analysis, we noted 

hat a substantial share of variant peptides in GRCh37 would be
anonical in GRCh38. For results that are fully up to date, a reanal-
sis of the data provided by the 1000 Genomes project on the cur-
ent genome assembly is necessary. Limitations also come with 

he dataset of phased genotypes, as phasing may be inaccurate in
egions with low linkage disequilibrium or in re petiti ve regions, re-
ulting in an ov er estimation of ha plotype fr equencies [ 1 ]. Finall y,
he methods for the scoring of confidence of peptide-spectrum 

atc hes ar e not well suited to distinguishing between multiple
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andidate sequences with a high degree of similarity. In the liter-
ture, the identification of variant peptides is validated by gener-
ting r efer ence spectr a using synthetic peptides [ 36 , 37 ], but suc h
n a ppr oac h pr esents a substantial cost and low throughput. In
he present w ork, w e used retention time and fr a gmentation pr e-
ictors to generate the reference spectra in silico and used these to
 v aluate the matc hes. Pr edictors can instead be dir ectl y coupled
o P er colator, as implemented in MS2Rescore [ 38 ], and hence pro-
ide features that can improve the discrimination po w er betw een
ery similar peptides. 

In conclusion, accounting for pr otein ha plotypes in the search
pace for mass spectrometry–based proteomic identification im-
r ov es the ability to cov er r ele v ant r egions of the pr oteome and
olds the potential to be utilized in the medical context, given that
he database of protein haplotypes is complete and up to date, and
ovel methods of quality control are developed. 

aterials and Methods 

atabase of protein sequences 

he sequence database used for the search was built using data
rovided by Spooner et al. [ 1 ], who generated a database of pro-
ein haplotypes using their tool Haplosaurus , a vailable as a part
f the Ensembl Variant Effect Predictor [ 39 ]. The haplotypes were
enerated using phased genotype data from the 1000 Genomes
roject Phase 3, obtained using methods described in [ 2 ]. The hap-

otype analysis was performed using the transcript database En-
embl version 83 [ 40 ], human r efer ence genome assembl y v er-
ion GRCh37 [ 1 ]. The data provided by Spooner et al. [ 1 ] can be
ound at [ 41 ]. For this w ork, w e selected onl y pr otein ha plotypes
ener ated fr om minor alleles with fr equenc y at least 1% w orld-
ide . T his database was appended with the list of canonical pro-

ein sequences in the corresponding version of Ensembl and a list
f common sample contaminants, obtained from [ 42 ]. The result-
ng search space contains 104,736 r efer ence sequences, assembl y
ersion GRCh37, 290,080 protein haplotype sequences obtained
s described abo ve , and 116 sequences of sample contaminants.
n total, 394,959 decoy sequences were generated using the algo-
ithm DecoyPyrat [ 43 ], provided by the tool py-pgatk [ 12 ]. The fi-
al protein sequence database in the FASTA format is available as
upplementary material (SD1, SD2). 

lassification of peptides 

e classified peptide sequences as canonical, single-variant, or
 ultiv ariant based on the number of amino acid substitutions

hey contain. If a peptide is canonical with respect to one pro-
ein sequence and single-variant or multivariant with respect to
nother protein sequence, it is classified as canonical. Similarly,
f a peptide is a single-variant peptide with respect to one pro-
ein sequence and m ultiv ariant with respect to another protein
equence, it is classified as a single-variant peptide. Substitutions
apping to a peptide that has been “downgr aded” in suc h manner

re not considered as discovered, or disco verable . 

ublic data reanalysis 

e used this database to perform a r eanal ysis on a subset of data
ublished and initially analyzed by Wang et al. [ 17 ]—108 fractions
rom 3 samples of healthy tonsil tissue digested by trypsin, frag-

ented using higher-energy collisional dissociation (HCD) (MS ex-
eriment IDs: P013107, P010694, P010747). 

The search was performed using the command-line interface
f SearchGUI v. 4.1.16 [ 44 ], employing the X!Tandem search algo-
ithm [ 19 ], allowing for the oxidation of methionine as a variable
odification and carbamidomethylation of cysteine as a fixed
odification, with the “quick acetyl” and “quick pyrolidone” op-

ions of X!Tandem enabled. Pe ptideShak er v. 2.2.20 [ 45 ] was used
or postprocessing of the search results and export of the PSMs to
 er colator v. 3.5 [ 20 ], which was used to evaluate the confidence
f the matches and threshold using an FDR analysis [ 46 ]. The list
f PSMs was filtered to retain matches with a q -value below 0.01
i.e., FDR is lo w er than 1%). If a peptide matched to a contam-
nant sequence, it was r emov ed fr om further analysis. As some
f the canonical protein sequences in Ensembl contain multiple
top codons, the stop codon symbols were removed from their
equences for compatibility with X!Tandem. Peptides that would
ontain a stop codon were removed from further analysis. 

uality control 
o provide supporting evidence for the confidence of the PSMs,
 hr omatogr a phic r etention times wer e pr edicted by DeepLC v.
.0.0 [ 21 ], and expected peptide fr a gment ion intensities wer e pr e-
icted using MS2PIP v. 3.6.3 [ 22 ]. Peptides passing the 1% FDR
hr eshold wer e used for calibr ation of the DeepLC pr edictions . T he
bsolute distance between the centered and scaled predicted and
bserv ed r etention times was computed. The MS2PIP pr edictions
ere used to measure the distance between the predicted and ob-

erved spectrum. The peaks are scaled so that the median inten-
ity in the observed spectrum corresponds to the median intensity
n the prediction. A peak in the observed spectrum is considered

atching to a peak in the prediction if it differs in m/z by no more
han 10 ppm. The distance between the matc hed pr edicted peaks
nd the observed ones is expressed as their angular similarity, cal-
ulated by the formula in Equations 1 and 2 : 

C ( M, P ) = 

∑ n 
i = 1 m i p i √ ∑ n 

i = 1 m 

2 
i 

√ ∑ n 
i = 1 p 2 i 

(1)

A ( M, P ) = 1 − arccos ( C ( M, P ) ) 
π

(2)

here M = ( m 1 , …, m n ) is the set of intensities for the matched
easured peaks, and P = (p 1 , …, p n ) is the set of intensities for the
atc hed pr edicted peaks, and n is the number of matched peaks

n the spectrum. C ( M , P ) denotes the cosine similarity between
 and P , and A ( M , P ) denotes the angular similarity between M

nd P . 
Pr edicted and observ ed spectr a wer e also displayed as mirr or

lots for visual comparison in selected PSMs . T he peaks in the
bserved spectrum matching to a predicted peak are highlighted
n blue. As the intensity prediction for certain ion fr a gments by

S2PIP is missing, peaks matching those ions are highlighted in
ink. The r emaining measur ed peaks ar e displayed in gr ay. Peaks
f the predicted spectrum are shown as negative values and la-
eled by the corresponding fragment ion. The predicted peaks that
atc h a measur ed peak ar e displayed in gr een, and unmatc hed

redicted peaks are displayed in red. 

epQuery analysis 

he variant PSMs passing 1% FDR at PSM le v el using X!Tandem
ere further validated using PepQuery (v2.0.3) [ 33 ]. The follow-

ng parameters were used: fixed modifications, carbamidomethy-
ation of C; variable modifications, oxidation of M, ammonia loss
f C, Glu → pyro-Glu of E, Gln → pyro-Glu of Q, acetylation of pep-
ide N-term; precursor ion mass tolerance, 20 ppm; MS/MS mass
olerance, 0.05 Da; enzyme specificity, trypsin; maximum missed
leav a ges, 2; allo w ed isotope range: −1,0,1,2. The parameter “-hc”
as also set in the analysis . T he human protein database from
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GENCODE Release 43 (GRCh37) was used as the r efer ence pr otein 

database in the validation. The PSMs that passed all the filtering 
steps in P epQuery w er e consider ed confident. The filtering pr ocess 
is described in detail in [ 33 ]. Amino acid substitution modifica- 
tions were not considered in the filtering process. PSMs classified 

as low scoring were assigned a score above the threshold of 12 
by the Hyperscore algorithm, as is the default; see [ 33 ] for details.
A complete list of variant PSMs with possible alternative peptide 
candidates suggested by PepQuery is available as supplementary 
material (SD5). 

Source Code and Requirements 

The pipeline to r epr oduce the postpr ocessing steps and a further 
description of the resulting files are provided in https://github. 
com/ ProGenNo/ FindingHaploSignatures [ 47 ]. 

� Project name: Finding Haplotypic Signatures in Proteins 
� Pr oject homepa ge: https:// github.com/ ProGenNo/ 

FindingHa ploSignatur es 
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: Python 

� Other r equir ements: Snak emak e v. 7.0.0 or higher, Anaconda 
2022.10 or newer 

� License: MIT 

Additional Files 

Supplementary Table S1. PSMs matching to the multivariant pep- 
tide covering a region of the most common haplotype of the 
IGQAP2 protein and their r espectiv e confidence measures . T he 
posterior err or pr obability and q -v alue as obtained fr om P er cola- 
tor are listed along with retention time difference to prediction as 
obtained from DeepLC, as well as spectrum similarity with pre- 
diction as obtained from MS2PIP. 
Supplementary Table S2. Searc h par ameters used for the 
X!Tandem implementation in SearchGUI. 

Da ta Av ailability 

Supplementary data can be downloaded from figshare [ 47 ]. Other 
data further supporting this work are openly available in the Gi- 
gaScience repository, GigaDB [ 48 ]. 

We provide the following files: 
Supplementary Data 1: FASTA file including all target protein 

sequences (Ensembl r efer ence pr oteome, pr otein ha plotype se- 
quences, contaminant sequences), excluding decoys. 

Supplementary Data 2: FASTA file including all target and de- 
coy sequences. 

Supplementary Data 3: List of all peptide-to-spectrum matches 
(PSMs), r esulting fr om the first run of X!Tandem without the r e- 
finement pr ocedur e, with all r elated metadata and quality control 
measures. 

Supplementary Data 4: List of substitutions identified, along 
with IDs of corresponding PSMs. 

Supplementary Data 5: List of variant PSMs and peptide can- 
didates suggested b y P epQuery, along with confidence scores for 
each peptide candidate. 

Abbreviations 

FDR: false discov ery r ate; HCD: higher-ener gy collisional dissoci- 
ation; LC: liquid c hr omatogr a phy; LD: linka ge disequilibrium; MS: 
ass spectrometry; MS/MS: tandem mass spectrometry; PEP: pos- 
erior err or pr obability; PSM: peptide-to-spectrum matc h; PTM:
ost-translational modification. 
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