
Interactive Semantic and Aesthetic Guidance for
Multi-View Visualization Design

Kristiansen, Yngve S

Dissertation for the degree of Philosophiae Doctor (PhD)

Supervised by Stefan Bruckner
Co-supervised by Manuela Waldner

Department of Informatics
University of Bergen

October 2022

Scientific Environment

The work presented in this thesis was conducted as a part of my PhD studies at the
Department of Informatics, University of Bergen. In addition, I have been enrolled in
the ICT Research School at the Department of Informatics, University of Bergen.

Acknowledgements

I want to thank Stefan Bruckner for being a great main supervisor. He provided guid-
ance and help in all situations when I needed it, and encouraged me to pursue ideas I
found interesting. Many times during this thesis, things did not always go as expected,
and Stefan helped me to reach the goal and get our works published. Without his guid-
ance and influence, I would not have been able to finish the papers within this thesis.
His love for ideas and concepts, Red Bull, and bad puns is on a level I have never seen
before, ever, and I will never forget.

I also want to thank my co-supervisor Manuela Waldner for helpful advice, insights
and related works into ideas pursued during this PhD.

And thanks to the others at the UiB VisGroup who made a great work environment.
Thanks to Helwig Hauser and his surprisingly good table tennis skills, his stories of
hikes he’s done (that I have not done). Noeska Smit made the work environment at
the VisGroup really great by always making some time for social arrangements such as
coffee breaks, and in general being there to listen and give advice. I also wish to thank
the “Island Expert” and former office mate Fabian Bolte for sometimes arriving later
than myself. With him, I discussed so many ideas back and forth, which ultimately
helped shape the final ideas that ended up in the papers. Furthermore, without him
I would not have the title “Meat Expert” on my door sign, or started spending way
too much time playing table tennis at work. I thank Laura Garrison and Ollie the dog
for giving me much needed sanity checks for the last two papers, and for having the
patience to help me clarify the stories behind the papers. My last two papers would
not have been the same without her insights and designer skills. I also want to thank
Chaoran Fan for all the countless games of table tennis, surprising me and the rest of
the group with really delicious special chinese snacks such as dried squid and cod. I
thank Fourough Gharbalchi for her hospitality, and for on occasion joining the table
tennis, and for bringing her little Instagram-star friend Barney to work. I want to thank
Thomas Trautner for deep discussions about profound topics, his shared enthusiasm for
fishing, and for helping arrange super nice trips and dinners together, and for taking the
time to listen to rants about encountered challenges during the course of my studies. I
also thank Eric Mörth for being a part of these things, and for teaching me the ways
of flying drones, photography and building bamboo bikes. I also wish to thank Sergej
Stoppel for arranging all kinds of social things before he left us, and for suggesting a
“wear pajamas to lunch day”, even though it never came to fruition I still think it is a
great idea. I thank Eduard Gröller for coming to see all of us in the VisGroup, several
times a year, and for his even more surprisingly strong table tennis skills. Related to
this, I also wish to thank the table tennis group who I spent probably way too much
time with: Torstein, Emmanuel, Emmanuel, and Chaoran. And I also thank Emmanuel
Sam for helping me spend work time not working. I also thank Sherin Sugathan for

iv Acknowledgements

sometimes joining for table tennis, and sharing knowledge and insights into his own
work experience.

I also want to thank my family for supporting me through this period of my life.
And I wish to thank Silje Sofie for supporting me through the ups and downs of this
work, and helping me forget about work and just relax when I needed it the most.

Abstract

In recent times, the amount of data has been increasing massively. Analyzing this
data with the help of visualization is highly useful, but also difficult for non-experts.
Multiple views are typically used in conjunction to visualize more complex insights
into data. Such multi-view visualizations are more difficult to design, more prone to
design errors, and involve a more complicated design process. When designing a multi-
view visualization, there are several aspects to consider: (1) how the visualization is
specified, (2) means for extracting useful and actionable information, i.e., reasoning
about the visualization, and finally (3) means for achieving a refined, or more aesthetic
design. A user may be an expert in one or two of these aspects, but rarely all of them.
In many cases, the user is not an expert in any of these aspects. With the increasing
amount of data that needs to be analyzed and communicated, it is essential to make
these aspects of multi-view visualization design more available to non-expert users
through interactive, automatic and semi-automatic approaches.

In this thesis, we introduce approaches to make typically “expert-only” techniques
more available to non-experts. Therefore, we first introduce an approach that lets users
use simple charts as building blocks to create more complex charts by nesting them.
This approach is powered by our novel data structure for specifying, editing, and ren-
dering a nested visualization by editing a hierarchy of charts. Within this approach we
also provide mechanisms for flexible data mappings, which allows for rapidly toggling
between different visual representations, and for specifying visualizations less depen-
dent on specific underlying data arrangements. The expressive power of these contri-
butions was integrated into our visual builder, which ultimately enables non-experts to
express highly detailed and aesthetic nested visualizations as demonstrated by a wide
range of results generated with our approach.

Then, we proposed means for guiding users towards creating more consistent and
compact multi-view visualization designs with our novel approach dubbed semantic
snapping. With semantic snapping, the user is able to selectively apply operations to
resolve potential design conflicts, such as inconsistencies, ambiguities, or redundan-
cies. The core idea of our method is that each design can be positioned in a semantic
space according to its degree of compactness and degree of consistency. We then define
design anti-patterns as algebraic relations that are automatically detectable. Given these
algebraic relations, we propose corresponding operations to remove relations from the
design by making changes to individual elements. Based on these relations and op-
erations, we provide a workflow wherein operations are selectively made available to
the user, enabling incremental refinement of a multi-view visualization design. We
demonstrate the utility and value of our approach with case studies where we show
incrementally refined and ultimately improved multi-view visualization designs.

We then address the problem of multi-view visualization layout with our approach

vi Abstract

for making multi-view visualization layouts “content-driven”. From an existing grid
layout, our approach generates an aesthetic, seemingly “hand-crafted” layout where el-
ements are positioned according to their contents rather than bounding rectangles. This
is achieved by using a force-directed layout to generate attraction and repulsion be-
tween elements. In this layout, attractive forces model the original arrangement of the
grid layout, and are thus based on a minimal set of central elements derived from the
original layout in an algorithmic fashion. The contents of the elements are modeled
by repulsive forces, which are derived from the distance transforms of individual ele-
ments. This use of distance transforms for content-to-content repulsion handles highly
irregular shapes, which allows for a better utilization of unused white space around the
shapes. We demonstrate the value of our approach with case studies where our content-
driven layout approach refines grid layouts with a high degree of unused white space
into content-driven layouts that effectively utilize white space around irregular shapes,
thus better capturing aesthetic qualities of an artistic design.

Abstract in Norwegian

I det siste har mengden data i omløp blitt stadig større. Det er nyttig å analysere denne
dataen ved hjelp av visualisering, men det er også vanskelig for brukere som ikke er
eksperter i dette feltet. For å vise mer innblikk i datasett brukes ofte flere visualis-
eringer på samme skjerm. Slik bruk av flere visualiseringer er vanskeligere å designe
gitt en mer komplisert designprosess, og er derfor mer utsatt for designfeil. Det er
flere spørsmål som må besvares som en del av designprosessen: (1) Hvordan visualis-
eringen er spesifisert? (2) Hvordan kan man automatisk resonnere om visualiseringer?
Dvs. finne nyttig informasjon som kan brukes i praksis? Og (3) Hvilke måter kan vi
automatisk gjøre et design bedre og mer estetisk? En person har kanskje ekspertise til å
besvare ett eller to av disse spørsmålene, men sjelden alle. I mange tilfeller vil en per-
son ikke inneha ekspertise til å besvare noen av spørsmålene. Gitt den økende mengden
med data som trenger analyse er det viktig å gjøre slik designekspertise tilgjengelig til
gjennomsnittlige brukere gjennom programvare og mer automatiske løsninger.

I denne avhandlingen introduserer vi metoder som gjør ekspertkunnskap tilgjen-
gelig for brukere som ikke er eksperter. Først introduserer vi en metode som lar brukere
bygge et hierarki av enkle visualiseringer som resulterer i mer detaljerte hierarkiske vi-
sualiseringer. Denne metoden er muliggjort av vår nye datastruktur for å spesifisere,
redigere og tegne hierarkiske visualiseringer ved å redigere et enkelt hierarki av en-
klere diagrammer. Vår metode inkluderer også mekanismer for mer fleksible måter å
oversette et datasett til en visualisering. Denne fleksibiliteten gjør det mulig å skifte
hurtig mellom forskjellige visuelle representasjoner, og å spesifisere visualiseringer
mer uavhengig av hvordan den underliggende dataen er arrangert. Vår metode gjør det
mulig å uttrykke et bredt spekter av forskjellige visualiseringer som ellers krever mye
ekspertise å lage. Dette er demonstrert av vårt program som lar ikke-eksperter uttrykke
detaljerte og estetiske hierarkiske visualiseringer.

Vi skifter så fokuset over på metoder for å veilede brukere mot å lage mer kon-
sistente og kompakte samlinger av visualiseringer med vår nye metode kalt semantic
snapping. Med semantic snapping kan brukeren selektivt utføre operasjoner for å løse
potensielle designkonflikter som for eksempel tvetydiget eller overflødighet. Hove-
dideen bak vår metode er at hver samling av visualiseringer kan plasseres på et plan i
henhold til graden av kompakthet og konsistens. Vi definerer disse designkonfliktene
som algebraiske relasjoner, dvs. automatisk detekterbare algebraiske predikater som
beskriver forhold mellom flere diagrammer. Basert på disse predikatene introduserer vi
operasjoner for å fjerne disse relasjonene, noe som lar brukere forbedre det helhetlige
designet et steg av gangen. Vi setter så disse relasjonene og operasjonene sammen til
en arbeidsflyt, hvor brukeren kan utføre en operasjon av gangen, og derved forbedre et
design et steg av gangen. Nytten av vår metode er demonstrert gjennom våre eksempel-
studier, hvor vi viser stegvis forbedring av en eksisterende samling av visualiseringer.

viii Abstract in Norwegian

Til slutt ser vi på layout av en samling av visualiseringer, dvs hvordan de indi-
viduelle visualiseringene er posisjonert. Vi presenterer en automatisk metode for å po-
sisjonere visualiseringer etter sitt innhold, heller enn en firkant rundt innholdet. Fra et
eksisterende layout hvor elementene er plassert i rektangler, lager vår metode automa-
tisk et nytt tilsynelatende “håndlaget” layout hvor elementene er posisjonert i henhold
til sitt faktiske innhold. Vi oppnår dette ved å kjøre en fysikksimulering med attrak-
tive og frastøtende krefter mellom elementene. Attraktive krefter emulerer de relative
posisjonene i det originale layoutet. De frastøtende kreftene er regnet ut ved hjelp av
Euklidske avstandsfelt, som støtter elementer uavhengig av form, som igjen fører til
bedre bruk av ubrukt tomrom i det endelige designet. Vi demonstrerer vår metode med
flere eksempelstudier hvor vi begynner med layout med en høy grad av ubrukt tom-
rom, og ender opp med mer kompakte layout som gjør bedre nytte av skjermplassen,
og resulterer i et mer “håndlaget” design.

List of Papers

This thesis is based on the following publications:

(A) Yngve S. Kristiansen and Stefan Bruckner. Visception: An Interactive Visual
Framework for Nested Visualization Design. In Computers & Graphics (vol.
92), pages 13–27, 2020. (doi: https://doi.org/10.1016/j.cag.2020.08.007)

(B) Yngve S. Kristiansen, Laura Garrison and Stefan Bruckner. Semantic Snap-
ping for Guided Multi-View Visualization Design. In IEEE Transactions on
Visualization and Computer Graphics (vol. 92, no. 1), pages 43–53, 2021. (doi:
https://doi.org/10.1109/TVCG.2021.3114860)

(C) Yngve S. Kristiansen, Laura Garrison and Stefan Bruckner. Content-Driven
Layout for Visualization Design. In Proceedings of the International Sympo-
sium on Visual Information Communication and Interaction.

The manuscripts presented in this thesis were written during the PhD studies of
the main author. Stefan Bruckner is the main supervisor of the main author, and is
thus a collaborating last author of all papers. Stefan Bruckner was a great inspiration
for turning ideas into scientific contributions. His guidance and advice was essential
for creating and publishing the works presented in this thesis. For all contributions,
the main author was the driving force behind the realization and implementation. For
paper B and C, Laura Garrison aided with inspiration and generation of results, as well
as illustrations of presented ideas.

https://doi.org/10.1016/j.cag.2020.08.007
https://doi.org/10.1109/TVCG.2021.3114860

Contents

Scientific Environment i

Acknowledgements iii

Abstract v

Abstract in Norwegian vii

List of Papers ix

I Overview 1

1 Introduction 5
1.1 Problem Statement . 6
1.2 Scope and Contributions . 7
1.3 Thesis Structure . 8

2 State of the Art 11
2.1 Visualization Specification . 11

2.1.1 Grammars and Toolkits . 12
2.1.2 Hierarchical Visualizations . 14
2.1.3 Visual Builders . 17
2.1.4 Visualization Recommendation Systems 18
2.1.5 Evaluating Visualization Quality 19

2.2 Multi-View Visualizations . 21
2.3 Layout Strategies . 23

2.3.1 Content-Aware Strategies . 23
2.3.2 Automatic and Semi-Automatic Strategies 24

3 Contributions 27
3.1 Nested Visualization Design for Non-Experts 28

3.1.1 Nesting as a First-Class Operation 29
3.1.2 The Visception Tree . 30
3.1.3 Flexible Data Mappings . 33
3.1.4 Visual Builder . 36
3.1.5 Results . 37
3.1.6 Discussion and Limitations . 39

xii CONTENTS

3.2 Expert Visualization Design for Non-Experts 40
3.2.1 Semantic Snapping . 42
3.2.2 Semantic Space . 42
3.2.3 Detecting Potential Problems as Relations 43
3.2.4 Resolving Potential Problems with Operations 45
3.2.5 Demonstration and Workflow 46
3.2.6 Discussion and Limitations . 49

3.3 Artist Designs for Non-Artists . 49
3.3.1 Content-Driven Layout Pipeline 50
3.3.2 Arranging with Attractive Forces 51
3.3.3 Image-Based Repulsive Forces 52
3.3.4 Case Studies . 53
3.3.5 Discussion and Limitations . 54

4 Conclusion and Future Work 57

II Included papers 61

A Visception: An Interactive Visual Framework for Nested Visualization De-
sign 63
A.1 Introduction . 64
A.2 Related Work . 64

A.2.1 Formal Graphics Specifications 64
A.2.2 Data Exploration and Visual Authoring 66
A.2.3 Nested Visualization and Related Techniques 66

A.3 The Visception Framework . 68
A.3.1 Charts and VC-channels . 68
A.3.2 Visception Tree . 70

A.4 Implementation and Visual Builder . 73
A.4.1 Implementation . 73
A.4.2 Visual Builder . 75

A.5 Results . 78
A.6 Discussion and Limitations . 86
A.7 Conclusion . 89
A.8 (Appendix) Overview of Charts and VC-channels 89

B Semantic Snapping for Guided Multi-View Visualization Design 93
B.1 Introduction . 94
B.2 Related Work . 95
B.3 Semantic Snapping Model . 99

B.3.1 Semantic Space . 100
B.3.2 Algebraic Relations . 101
B.3.3 User Operations . 105
B.3.4 Snapping Algorithm . 106

B.4 Workflow & Implementation . 107
B.4.1 Workflow . 109

CONTENTS xiii

B.4.2 Implementation . 109
B.5 Case Studies . 109

B.5.1 2016 Election Results . 110
B.5.2 Nightingale Soldier Morbidity & Mortality in 1858 111
B.5.3 COVID-19 in Germany . 112

B.6 Discussion & Limitations . 113
B.7 Conclusion . 114

C Content-Driven Layout for Visualization Design 119
C.1 Introduction . 119
C.2 Related Work . 120
C.3 Content-Driven Layout . 122

C.3.1 Terminology . 122
C.3.2 Overview . 123
C.3.3 Attractive Forces . 123
C.3.4 Repulsive Forces . 125

C.4 Implementation . 126
C.5 Case Studies . 126

C.5.1 Respiration Patterns . 126
C.5.2 Wind Turbine Distribution in the US 128
C.5.3 Health vs. Wealth in the Countries of the World 130

C.6 Discussion and Limitations . 131
C.7 Conclusion . 132

Bibliography 133

0

Part I

Overview

0

0

«I think I am, therefore, I am... I think.»
George Carlin

0

11

Chapter 1

Introduction

In recent times, the production and storage of data has increased, and continues to
do so. To make better use of this data, many new methods and techniques have been de-
veloped across many research fields. One way to make use of data is to analyze it, and
derive information which hopefully leads to better decisions. Such information can be
derived by the use of machine learning, statistics, spreadsheets, or visualization. Visu-
alization is a tool for analyzing and communicating data by taking advantage of human
perceptual capabilities. For example, a line chart is both faster to read, and easier to
understand than a table of numbers. Such visualizations are created and consumed by
both experts and non-experts, leading to an overall increase in the use of visualiza-
tion for data analysis. This increase calls for more accessible visualization techniques,
especially for non-experts.

Visualization is comprised of several fields, focusing on different kinds of data, or
different kinds of visual representations. One of these fields is called information visu-
alization, and deals with visual representations of abstract data, i.e., data that does not
have an inherent spatial component to it. For example, a table or a hierarchy is abstract
data, while an X-ray scan is not. Such abstract data can be turned into visualizations in
several ways. For example, a single row in a spreadsheet may be rendered as a dot in
a scatter plot, as part of a line chart, or as a single bar in a bar chart. Design choices
in this process are often subjective, and in many cases not ideal when the designer is a
non-expert.

Design expertise is often not necessary to discover and communicate simple data
insights with basic charts such as line charts, bar charts, and scatter plots. These basic
charts are often expressible by non-expert users through most spreadsheet and busi-
ness intelligence programs. However, it is difficult to express more complex insights
with these solutions. Such complex insights can in most cases be visualized by one of
several techniques proposed by information visualization researchers. Unfortunately,
these techniques are often available to experts only. They are often available through
programming libraries, or in some cases within visual authoring tools. Techniques
available as programming libraries often abstract over some intricate details, but still re-
quire programming expertise. Thus, techniques are sometimes made available through
visual authoring tools, which require only user interaction. Visual authoring tools are
easier to use, but also complicated to create, as they must provide sensible, ideally sim-
ple interactions to specify complex charts. It is therefore common that visual builders
are narrowly scoped to a specific way of interaction for specifying charts. This nar-

1

6 Introduction

row scoping often comes at the expense of the flexibility and design freedom found in
programming libraries.

Complex insights into data are not only expressed with complex charts, but also by
using multiple charts in conjunction. This is often done within business intelligence en-
vironments such as Microsoft PowerBI and Tableau [97], where users can create multi-
ple charts and arrange them in a grid-layout dashboard. While some means for making
multi-view visualizations are available, multi-view visualizations are far less explored
and researched than single visualizations. This gap has been partially addressed by
recent research efforts to integrate novel visualization techniques and knowledge into
existing environments [61, 82], so that they can be used in conjunction. However, most
techniques are still reserved for experts only.

In this thesis, we aim to make novel multi-view visualization techniques and design
expertise more available to non-expert users through user interfaces exposing auto-
matic and semi-automatic techniques. First, we explore the idea of using nesting as a
first-class operator, and contribute a novel data structure for simplifying the specifica-
tion of nested visualizations. Along with this structure, we propose four approaches
for flexibly adapting visualization specifications to different underlying data formats,
which unburdens users from tedious data wrangling efforts. We then expose the flex-
ibility and expressiveness of our data structure and flexible data mappings through a
visual builder whose expressiveness is demonstrated by our examples. Then, we pro-
vide means for guiding users through the visualization design process with our novel
approach of semantic snapping, which is a visual “grammar checker” that lets the user
incrementally refine a multi-view visualization design. Design anti-patterns are defined
as a set of algebraic relations which are automatically detectable. Based on these rela-
tions, we propose corresponding operations which resolve design anti-patterns and thus
improve the design. We demonstrate the power of our approach with step-by-step case
studies where bad designs are turned into good designs with incremental refinements
generated by our approach. Finally, we address multi-view visualization layout with
our approach for turning the ubiquitously used grid layout into a content-driven lay-
out that better makes use of previously unused white space within the grid layout. Our
content-driven version of the layout is powered by a force-directed approach, where
the forces are inferred from the original layout and its elements. The original layout
arrangement is emulated by selective application of attractive forces derived from the
original grid layout topology. Precise content-to-content repulsion computation is in-
ferred by utilizing the distance transform of elements to infer accurate distances and
directions of repulsion. We demonstrate the utility of our approach by applying it to
existing grid layouts with high degrees of unused white space, resulting in seemingly
artistic “hand-crafted” layouts.

1.1 Problem Statement

The research presented in this thesis is motivated by challenges and problems aris-
ing when designing multi-view visualizations. Especially for non-expert users, recent
developments in information visualization are hard to take advantage of as they re-
quire either design expertise, or programming expertise. More precisely, we address
the following challenges of empowering non-expert users to: (1) flexibly specify both

1

1.2 Scope and Contributions 7

individual and nested visualizations, (2) design multi-view visualizations that commu-
nicate unambiguously and concisely to the audience, and (3) create aesthetically pleas-
ing multi-view visualization layouts that appear similar to manual artist designs. Most
designers are non-experts in at least one of these aspects of visualization design, since
they are most likely not aware of, or able to properly overcome all of these challenges
without guidance or expertise.

Business intelligence systems such as Tableau and PowerBI are frequently used to
express arrangements of simple charts such as bar charts and scatter plots. More ex-
pressive or flexible charts remain expressible only for expert users. For example, most
users are able to create a set of bar charts and scatter plots, and arrange them as a dash-
board. However, it is typically much more difficult to express the same data insights
with more unusual charts such as a treemap or a stream graph. Furthermore, users are
rarely able to use multiple charts in conjunction by nesting, juxtaposing, or overlaying
without tedious manual work such as coding it by hand, or using design tools such as
Adobe Illustrator to achieve the desired result. Enabling such expression of both com-
plex and conventional single visualizations, and for arranging such visualizations in a
multi-view visualization without manual coding or design efforts remains a challenging
task.

While a user may be very fluent in creating highly detailed custom charts, that user
is not necessarily an expert in visual communication. For example, the design may be
what the user intended, but also be misleading or confusing to the audience by having
ambiguous mappings. Current bodies of work on design guidelines, quality measures,
and pitfalls are spread across many different individual contributions. These contribu-
tions are in many cases targeted towards specific tasks and domains. Efforts have been
made to consolidate this knowledge to make it more accessible to non-experts. Yet, this
remains a challenge that still needs solutions.

In other cases, aesthetics of a visualization are highly important. Such aesthetic
visualizations are typically hand-crafted by expert designers or artists, often with a
high level of visual communication expertise. However, with the use of visualization
design software among non-experts, there is a potential for bad design choices which
may lead to confusing or misleading visualizations of data. This poses the research
challenge of granting non-expert users expert capabilities through automatic or semi-
automatic design tools.

1.2 Scope and Contributions

This thesis expands the state of the art on several aspects of multi-view visualization
design. The contributions of this thesis can be summarized as follows:

1. Specification. Based on the core idea of using nesting as a first-class operation,
we contribute the Visception Tree (shorthand: VC-tree) data structure that al-
lows for precise control data mappings at different hierarchical levels, as well as
implicit handling of nesting and deformation behaviors. Furthermore, we con-
tribute means for making visualizations less dependent on a specific tabular data

1

8 Introduction

arrangement by providing four different ways of expressing a chart’s data group-
ing. We expose the expressive power of the VC-tree and our flexible data map-
pings through our visual builder, which has a correspondingly high degree of
design expressiveness as shown by our results.

2. Reasoning. We enable the transformation from one chart into another by specify-
ing equivalences between visual channels. Furthermore, we contribute means to
extract useful, actionable knowledge about an existing multi-view visualization
design by specifying algebraic relations between individual views.

3. Aesthetics & refinement. We enable gradual removal of potentially ambigu-
ous or redundant design conflicts from a multi-view visualization with our novel
semantic snapping algorithm, which enables the user to remove automatically de-
tected problems by performing a corresponding operation with a single click. Fur-
thermore, we provide means for making the layout of a multi-view visualization
content-driven, i.e., positioning elements closely with regards to their contents,
rather than bounding rectangles.

1.3 Thesis Structure

This thesis consists of two parts. First, we show an overview of our research contribu-
tion, then we present individual publications. The individual publications are presented
verbatim, with only adjusted formatting to fit the layout of this thesis. The bibliogra-
phies of the individual papers are merged into a single, unified bibliography.

The overview part of our thesis is structured in the following way: Chapter 1 pro-
vides an introduction to the topic of the thesis, the general problem to be solved, and
provides the scope for our achieved contributions. In Chapter 2, we discuss related
work on multi-view visualizations, including visualization specification, multi-view vi-
sualization, and layout strategies. Based on this related work, Chapter 3 outlines the
contributions of this thesis, along with results to demonstrate the utility and value of
each contribution. Chapter 4 concludes the thesis by providing a direction for future
work on multi-view visualizations.

1

«If I have seen further it is by standing on the shoulders of Giants.»
Isaac Newton

1

22
Chapter 2

State of the Art

In this thesis, we present novel methods for guiding multi-view visualization de-
sign. Our first contribution is based on the core idea of using nesting as a first-class
operation, which leads to significant design flexibility and freedom. Then, we con-
tribute an approach for guided multi-view visualization design, where users are able to
review and resolve automatically detected problems. Finally, we introduce an approach
for generating content-driven layouts from existing grid layouts that are often used for
information visualization dashboards. Our work contributes to the field of information
visualization.

In this chapter, we discuss the state of the art for multi-view visualizations. We begin
by reviewing approaches for specifying visualizations, both general and more specific
approaches. First, we detail approaches for specifying visualizations, namely visual-
ization grammars and toolkits. We then focus on techniques for hierarchical visual-
izations, including layout techniques and grammars for hierarchical visualizations. We
continue to discuss interactive visualization specification, i.e., visual builders. Then,
we discuss means for evaluating and generating visualizations, namely visualization
quality metrics and recommender systems. We then shift our focus more specifically
towards multi-view visualizations, discussing works on visualization dashboards, and
semantics specific to multi-view visualizations. Finally, we discuss layout strategies
used in the context of multi-view visualizations in two parts: First, we discuss content-
aware strategies, where approaches for positioning multiple views by their contents are
discussed. Secondly, we discuss techniques that fully or partially use automation to
generate layouts. We provide a more detailed discussion of the relations between pre-
vious work and our own contributions in the individual related work sections of paper
A, B, and C.

2.1 Visualization Specification

Before computers were used to display pixels on a screen, data visualizations were
often crafted by hand. Specifying such visualizations is rarely trivial. This problem
of visualization specification has been addressed by many researchers through a wide
range of grammars, toolkits, techniques, and visual builders. These approaches share
the goal of our thesis, which is to enable users to specify visualizations of abstract,
non-spatial data. However, this act of specifying a visualization can be partially or
fully automated. Automation provides less human control over details, but also re-

2

12 State of the Art

Figure 2.1: Here, the expressive power of the well-known D3 [14] library is illustrated with a
few examples, all of which are specified mapping data to DOM elements.

quires less effort and involvement. Thus, a large body of research exists on the topic
of visualization recommendation, focusing on automating more of the design process.
When a human is involved in the design process, subjective evaluations and decisions
steer incremental refinements towards the final design. If a computer is doing the de-
sign, it is necessary to replace these subjective evaluations and decisions with quality
metrics that can be automatically computed. In this section, we discuss approaches that
enable for specification and evaluation of visualizations, with varying degrees of hu-
man involvement. The focus of this thesis is on interactive multi-view visualization
design, and moves towards increasingly automated approaches. Similarly, the focus
on these related works begins with fundamental works for visualization specification,
moving towards works involving a higher degree of automation. We first introduce
fundamental works on visualization grammars and toolkits, before describing more
specific techniques and grammars for specifying hierarchical visualizations. We then
move our focus to visual builders that allow users without coding expertise to interac-
tively specify visualizations. Finally, we focus on techniques for automatic generation
and evaluation of visualizations, namely visualization recommender systems and means
for evaluating visualization quality.

2.1.1 Grammars and Toolkits

One of the most basic ways to express a visualization with a computer is through a
visualization grammar or toolkit. Such grammars and toolkits allow users to express
visualizations of data that would otherwise be difficult to create. For example, a gram-
mar might let a user express “Create a bar chart where each bar represents one age
group, where the height is proportional to the income”. Ideally, grammars are are easy
to understand and demonstrate a high freedom of expression. The earliest, most basic
grammars were created to support basic statistical graphics such as scatter plots, bar
charts, line charts, and box plots. With the development of programming languages
and computer-generated graphics, grammars were adapted into visualization toolkits,
allowing expert programmers to proficiently and concisely specify graphics from data.
While these toolkits were less accessible to non-experts, they were also highly expres-

2

2.1 Visualization Specification 13

sive. This was very useful for expressing charts with many components and mappings,
and made it easier to express such charts. Such grammars and toolkits lay the founda-
tion for further research on visualization specification, and are thus also fundamental
to the contributions of this thesis.

Some of the most well-known grammars of graphics are Bertin’s Semiology of
Graphics [10] and Wilkinson’s Grammar of Graphics [109]. These grammars describe
graphics in terms of different units and visual variables that make up the resulting vi-
sualization. For example, Bertin’s Semiology of Graphics describes a chart as a set of
basic graphical units, and styling applied to these. If we consider a scatter plot, the ba-
sic graphical unit is a circle, and the position, texture, color of the circles are described
as visual variables. Munzner [73] made further efforts to consolidate existing gram-
mars. She proposed that charts can be specified in terms of marks and channels, where
marks denote the basic graphical units of the chart, and channels control the appear-
ance of these marks. For example, the marks of a bar chart describe the rectangles that
make up the bars, while its channels describe how the height and position and of the
bars are generated from data. These grammars facilitate discussion of both existing and
novel visualization techniques. With the development of programming languages and
computer-generated graphics, a new set of visualization toolkits emerged. These toolk-
its were often based on fundamental grammars, and provided constructs to be used in a
more proficient and concise manner by people with programming experience. Among
the first of these toolkits is Prefuse [39], a programming library for interactive infor-
mation visualization specification. It is a software framework for creating dynamic
visualizations. Within this framework, programmers can string together reusable com-
ponents to create their visualizations. Such abstractions are useful for specifying a wide
range of visualizations. However, Bostock and Heer [13] found that there was a gap
between low-level graphical systems typically used by designers, and high-level visual-
ization systems often used by analysts. Designers would typically be visually thinking,
i.e., think of the visualizations in terms of shapes, for example “create one bar per age
group, and adjust the height according to income”, whereas the high-level visualization
system abstraction might be “create a bar chart of age group and income”. In response
to this gap, they introduced ProtoVis [13], a toolkit for specifying visualizations by
means of visual thinking. Based on the underlying constructs of ProtoVis, Bostock et
al. [14] later introduced Data-Driven Documents (D3), a well-known and widely used
framework for creating web visualizations in the browser by directly mapping data to
DOM-elements. This direct mapping enables leveraging existing capabilities within the
web browser for creating animations and interactions, as well as further customizing
the visualization after creation as exemplified in Figure 2.1.

While these toolkits allow for visual thinking, they still require manual coding of
features like interaction and view composition. Manually re-implementing such fea-
tures for every chart can be tedious and time consuming, and is rarely necessary.
Declarative, high-level visualization grammars such as Vega [112] simplify this pro-
cess by enabling users to simply declare a visualization along with its desired mappings
and interactions at a high level. A Vega chart is made up of input data, a mark type, and
visual encodings. Each encoding specifies how a channel is mapped to data. Vega-Lite
[87] provides further functionality by adding the option to declaratively specify inter-
action, and providing a view composition algebra with four operations for composing
several views in different ways as seen in Figure 2.2. These grammars and toolkits

2

14 State of the Art

Figure 2.2: This figure shows a Vega-Lite [87] specification on the left, and a corresponding
visualization on the right. The code that is highlighted in green creates the interactive brush as
seen on the leftmost bar charts, which filters what is seen on the charts to their right.

greatly simplify the visualization creation process, but fall short when it comes to more
specific and complex charts. While it is possible to specify complex hierarchical vi-
sualizations with visual thinking based toolkits such as D3 [14], the complexity of the
specification is often too high for most non-expert users. Declarative grammars may
support some specific complex hierarchical charts, but are not able to express such com-
plex charts at a general level. Paper A [56] aims to enable users to interactively specify
such charts at an arbitrary level by utilizing nesting as a first-class operator, which
both simplifies the design process while also allowing for expressing highly complex
designs.

2.1.2 Hierarchical Visualizations

Expressing elaborate visualizations of hierarchical nature is complicated, and is thus
often not fully covered by generalist grammars such as Vega [112], or easily express-
ible with visual thinking frameworks. Therefore, specific grammars and techniques for
creating such hierarchical visualizations have been proposed. For this category of visu-
alizations, we focus on works that address at least one of the following: (1) specific lay-
out techniques for hierarchical visualizations, (2) grammars for declaring hierarchical
visualizations, (3) specialized grammars and techniques for composing and combining
visualizations by using high-level operations.

Hierarchical layout techniques are often described in terms of several layout
stages or operators that can be combined. The use of such operators can be seen
throughout several works. For example, ZAME [28] (Zoomable Adjacency Matrix Ex-
plorer) allows for the exploration of large datasets by embedding detail information into
glyphs displayed within cells of an interactive adjacency matrix. The interactivity of
this adjacency matrix comes in the form of interactive zooming and panning function-
ality, which enables closer inspection of detail information within each cell. NodeTrix
[40] shows more data and relations with less visual space by combining the node-link
diagram and adjacency matrix into one technique, where each node is an adjacency
matrix of its own, and links are drawn between cells of different adjacency matrices to

2

2.1 Visualization Specification 15

Figure 2.3: Here we see Nodetrix, a hybrid visualization combining a node-link diagram with
adjacency matrices in order to better illustrate relationships in social networks.

illustrate relations efficiently as seen in Figure 2.3. Similarly, Domino [37] combines
different techniques to achieve better comparison of data across subsets of multiple
datasets. More specifically, they define individual charts as blocks representing rectan-
gular regions corresponding to subsets of data. These blocks can be combined or linked
together to further expose relationships within the data.

Schulz et al. [91] surveyed the design space of 2D and 3D hierarchy visualiza-
tion techniques, and exposed unexplored parts of the design space. Furthermore, they
contributed an implementation for generating visualizations within this design space,
which proved highly useful for comparing different designs. View-composition tech-
niques typically used for non-hierarchical data also prove to be useful when visualiz-
ing hierarchies. Javed and Elmqvist [49] unified existing coordinated multiple view
techniques with other strategies for composing visualizations. From existing liter-
ature, they derived four operators: juxtaposition, superimposition, overloading, and
nesting. Throughout their survey, they illustrate how these four operators are used to
generate different designs. LeBlanc et al. [57] introduced the technique of dimen-
sional stacking, backed by the core idea of displaying multiple dimensions aggregated
within existing dimensions. This ultimately lets users map high-dimensional data to
a smaller 2D space. Such stacking of dimensions can be used with different layouts.
For example, the treemap [17] layout recursively subdivides a rectangular space into
data-proportional sections, and is well-suited for showing hierarchies. Such treemap
techniques were explored further by Baudel et al. [8], who captured the treemap design
space with an algorithm for expressing different existing treemap layouts by using a few
basic operations. Similar to treemaps, the circle packing layout [106] creates circles
nested within other circles, corresponding to data hierarchies of arbitrary depth. Such
packing can also be achieved by nesting circles with a force-directed layout [33], which
simulates circles as physical entities that repulse each other upon collision. Nested hier-
archical structures have also been explored by using large 3D nested graphs as proposed
by Parker et al. [77]. This large 3D graph made it easier to understand complex rela-
tionships within software. Schulz et al. [90] applied the idea of composing existing
techniques to explicit node-link diagrams, and proposed a generative approach for ex-
pressing tree and node-link visualizations in terms of operators that can be applied to

2

16 State of the Art

the layout at a certain stage.
When novel visualization techniques are introduced, they are often unfamiliar to

non-expert users. Loorak et al. [63] addressed this problem by enabling the extension
of well-known, familiar visualizations with their component dubbed HEDA (Hetero-
geneous Embedded Data Attributes). This component allows for extending existing
visualization techniques, while respecting an original layout. Similarly, Slingsby et
al. [95] proposed the nesting of different layouts to display hierarchies of data with
their proposed language HiVE (Hierarchical Visualization Expression Language). This
language provides operations for editing, deleting, inserting and swapping at different
hierarchical levels. Specific grammars for hierarchical visualizations have also been
proposed. Li et al. [58] proposed a declarative tree visualization grammar where users
can express visualizations both explicitly and implicitly. With their visual builder, users
are also able to combine different tree layout algorithms and adjust finer aspects which
would otherwise have to be coded by hand. ATOM [76] is a grammar for specifying unit
visualizations, i.e., visualizations where every row in a tabular dataset is represented as
one graphical unit. This grammar allows for subdividing a space as multiple levels, fill-
ing in one unit per datum as shown by Figure 2.4. Wickham and Hofmann’s Product
Plots [107] similarly combine 1D primitives to express area-based visualizations. With
the three base primitive (bars, spines, and tiles) it is possible to express a wide range of
both simple and complex visual representations of data. Schulz and Hadlak [92] also
proposed means to represent visualizations by blending together existing visualizations
defined as presets. This blending allows for smoothly interpolating between different
visual representations, allowing for the expression of smooth animations. Vuillemot
and Boy [105] proposed a tool for rapidly prototyping complex visualization designs
by compositing and nesting visualizations regardless of data. They do this with a visual
grammar made up of partitioning patters and data transformation operations.

Figure 2.4: To the left, we see an ATOM [76] specification of the chart seen on the right. The
chart illustrates survival rates by gender and class on the Titanic, where each individual circle
represents a single person.

These works all aim to visualize hierarchies of data, and enable for simple expres-
sion of otherwise complicated hierarchical layouts. They show the trend of techniques
moving towards flexible composition of existing approaches, rather than inventing cus-

2

2.1 Visualization Specification 17

tom methods for particular purposes and datasets. Furthermore, we see that grammars
tailored towards certain categories of visualizations have been developed. These works
use nesting and composition of different techniques as a means to an end, but never as a
first-class operator. In paper A [56], we address this gap by making nesting a first-class
operation, putting the user in control of the hierarchy of data as well as the correspond-
ing hierarchy of charts. This core idea makes it possible to create nested visualizations
similar to those expressible by specialized grammars in an interactive manner.

2.1.3 Visual Builders

While grammars and toolkits allow for specification of visualizations, they also typi-
cally require coding skills. Even declarative approaches can be confusing to users with
little coding experience. For such users, the use of a graphical user interface is a better
option as it requires no programming expertise. Such systems for designing visualiza-
tions interactively are often referred to as visual authoring tools, or visual builders.

Figure 2.5: Here we see an overview of the Charticulator [82] user interface, where users can
combine different glyphs and marks to specify highly flexible visualizations.

The first visual builders were primarily focused on the exploration of data, rather
than design and aesthetics. IVEE [2], Visage [83], and Tioga2 [3] were among the first
systems that enabled visual building of database queries with resulting visualizations.
Polaris [97] by Stolte et al. was later commercialized as Tableau, and enables the rapid
exploration of large multidimensional datasets by using a table algebra to display a va-
riety of charts. With the improvement in computer performance and the development
of new techniques, new kinds of visual builders were explored by researchers. These
builders are not primarily focused on showing insights into the data, but also consider
on how the insights into the data are shown. In other words, these new builders provide
more design freedom and expressiveness than previous data exploration oriented tools.

2

18 State of the Art

For example, Lyra [85] lets users interactively create highly customized visualizations
with drag-and-drop operations. It also lets users express advanced layouts and data
transformations through its graphical interface. iVisDesigner [81] is another example
of a visual builder, which also enables the expression of a wide range of different vi-
sualizations by providing a high degree of conceptual modularity. Following a similar
line of thought, Charticulator [82] enables the specification of custom shapes by speci-
fying data-driven compound marks, glyphs, and links through a visual builder as seen in
Figure 2.5. Likewise, Data Illustrator [61] aims to provide a “data-driven” design pro-
cess similar to the workflow of Adobe Illustrator. It lets users specify data-driven vector
shapes within vector design tools by leveraging new concepts and operators for binding
vector-based components to data. Kim et al. [52] proposed Data-Driven Guides, a tech-
nique for visually building embellished charts with highly customized shapes as seen
in Figure 2.6. While authoring systems let users specify layouts interactively, iVolver
[74] allows for interactively extracting data from visualizations.

Figure 2.6: Here we see Nigel Holmes’ Monstrous Costs chart, recreated with the Data-Driven
Guides [52] technique for creating embellished visualizations. The chart is recreated by first
importing the monster on the left, and then mapping data to the height of the triangles repre-
senting its teeth.

Such visual builders often address very or slightly different problems, and are thus
highly difficult to compare. To address this difficulty in comparing systems, Satya-
narayan et al. [86] assessed three recent systems, namely Data Illustrator [61], Chartic-
ulator [82], and Lyra [85]. From this study, they proposed a set of criteria to evaluate
such authoring systems on a general level.

These builders all provide innovative ways to specify a wide range of charts, yet
provide limited support when it comes to nesting of charts. Paper A [56] addresses this
by making nesting available as a first-class operator in a visual builder, letting users
express highly complex layouts by nesting of simple, understandable layouts.

2.1.4 Visualization Recommendation Systems

Heavy focus on expressive power provides great design flexibility, but also relies on
user expertise in creating good designs. For users without such expertise, guidance
systems embedded into design tools would be of great benefit. However, such guid-
ance systems for refining and evaluating existing designs are most developed within
visualization recommendation systems. We will now discuss such works that recom-
mend, refine, or suggest improvements for existing designs. These works are important
since they can effectively make expert knowledge and design guidelines available to

2

2.1 Visualization Specification 19

users in an automatic or semi-automatic fashion. Such tools for automatic generation
of infographics and visualization recommendations were surveyed by Zhu et al. [118],
where they classified approaches into a set of application categories including network
and graph visualization, annotation visualization, and storytelling visualization. Such
automatic approaches lower the barrier of entry for novice users. Grammel et al. [36]
found that novice users would greatly benefit from a tool that supports iterative well-
explained refinements to existing visualizations. In paper B, we address this need with
an approach that provides users the ability to detect potential problems in a multi-view
visualization, and resolve them with corresponding operations. One of the first tools to
automatically generate visualizations from data is MacKinlay’s APT (A Presentation
Tool) [64]. In this work, he proposed a composition algebra for automated visualiza-
tion design based on Cleveland and McGill’s effectiveness metrics [22]. These metrics
judge how effective a human is at evaluating different aspects of 2D visualizations such
as positions on a common scale, length, area, angle, and curvature. Wongsuphasawat
et al. later introduced CompassQL [111], a general language for querying the space
of visualizations, which has been used to power visual recommendation systems. Voy-
ager [110] is an example of such a system powered by CompassQL, and enables data
exploration by browsing of automatically generated visualizations. Voyager 2 [113] im-
proves further on the state of the art by letting users partially specify what data should
be shown, resulting in a set of automatically generated charts showing related data.
Other approaches to recommend visualizations have also been explored. For example,
Data2Vis [26] formulates visualization generation as a language translation problem,
where a data specification is mapped to a Vega-Lite [87] specification. Within the visu-
alization design environment of Tableau, Show Me [65] provides means for displaying
additional data attributes on a chart with a single click, and serves as a set of high-
level commands for showing multiple fields within a single view. Draco [72] enables
the specification of visualization design guidelines as precise constraints accessible
through an Answer Set Programming environment. In this framework, single visual-
izations are modeled as sets of logical facts, and design guidelines are represented as
hard and soft constraints over these facts. Dziban [60] extends Draco further by pro-
viding anchored recommendations, i.e., where recommended charts are perceptually
similar to a provided "anchor" chart.

These approaches all focus on helping users more easily create visualizations with-
out having to do detailed design work manually. However, they only propose different
visualizations given a dataset and some information about what is shown. The ap-
proaches are often focused on what data is shown, and less so on exactly how it is
shown. Furthermore, they often only generate single visualizations, and rarely con-
sider problems that are caused by multiple visualizations. In paper B, we provide an
approach for generating and recommending incremental refinements to multi-view vi-
sualizations. These increments come in the form of operations that remove potentially
undesirable relations from the design.

2.1.5 Evaluating Visualization Quality

The quality of a visualization can be gauged by several aspects. Examples of such as-
pects include aesthetics, correspondence to underlying data, or that the visualization
correctly communicates the intended message to the audience. Due to visualizations

2

20 State of the Art

being used for many applications across different domains, quality measures are simi-
larly often targeted towards different domains and use cases.

Several works have proposed a wide range of different quality measures to evaluate
visualizations. These measures provide means for reasoning about different aspects of
a visualization, such as its effectiveness or level of ambiguity. For example, Behrisch
et al. [9] categorized quality measures from about 250 papers, most of which were
specific to a certain combination of underlying data, task, and visualization technique.
Such specifically targeted measures complicate the process of making them available on
a general level. This problem has been recognised, and efforts have been made towards
unification of these scattered works, aiming to make them available, understandable,
and actionable to users.

Bolte and Bruckner [11] surveyed measures by which aspect of the visualiza-
tion process they target: Perceptual characteristics, task-oriented quality measures,
structure-oriented measures, and meta-perceptual processes. Zhu [119] found in a liter-
ature review that definitions of visualization effectiveness are often incomplete, and in
some cases conflicting. He pointed out that measures usually take either a data-centric
view or task-centric view on what constitutes an effective visualization. Data-centric
measures consider how accurately a visualization corresponds to underlying data, while
task-centric measures consider how well-suited a visualization is for the intended task.
For example, Tufte’s data-to-ink ratio [102] exemplifies a data-centric metric since it
describes a desirable relationship between the data and its visual representation. Kindl-
mann and Scheidegger’s algebraic framework [54] is another example of a data-centric
framework for measuring visualization effectiveness as it only considers symmetries
between changes in data space and resulting changes in visualization space. Partially
based on this algebraic framework, McNutt and Kindlmann [67] proposed a mecha-
nism for detecting and linting potential problems in a single design. With better, more
universal quality metrics, such linting of existing visualizations can be highly helpful
for users. However, this kind of automatic detection of problematic designs has only
been realized for single visualizations, and not for multi-view visualizations. In paper
B, we provide an approach to automatically detect and resolve problems in multi-view
visualization designs.

A visualization can also be measured by how it is perceived by the observer. Cleve-
land and McGill’s graphical experiments [22] revealed how humans perform in ele-
mentary visual tasks such as comparing positions on a common scale. Correll et al.
[23] discuss how designs may appear to be showing data completely, while still hiding
important details. They further propose a set of actions to remedy such vulnerabilities
across different chart types.

Other measures consider both task and data. Cantu et al. [18] presented an ap-
proach for identifying relationships between visualization challenges and representa-
tion components. They argued that these relationships can increase our understanding
of mechanisms behind visualization components, which could be leveraged to build
visualization recommendation tools.

As shown by Zhu [119], different sets of guidelines and measures are often disjoint
and sometimes conflicting. Efforts to bring these different viewpoints closer have been
made by Diehl et al. [27] through the VisGuides forum which facilitates both collection
and discussion of visualization guidelines and knowledge in general. While there is
much knowledge in the visualization community in terms of formulating and creating

2

2.2 Multi-View Visualizations 21

Figure 2.7: This figure shows seven clusters of dashboards for different uses, identified by
Sarikaya et al. [84] in their survey on dashboards.

such design guidelines, Engelke et al. [30] point out that there is a great gap between the
visualization community, and users who are most in need of such guidelines. To remedy
this, they provide VISupply [30], a conceptual model that highlights problems and
opportunities for bringing visualization guidelines to non-experts. Paper B contributes
towards this gap, as it automatically detects problems and solutions that are presented
to the user in an easily understandable and actionable manner.

2.2 Multi-View Visualizations

While many established quality metrics can be applied to both multi-view and single-
view visualizations, multi-view visualizations are subject to different design challenges
and problems. In addition to single-view visualization metrics, a multi-view visualiza-
tion can be evaluated by its layout and relationships between several views. Potential
problems in a multi-view design are in many cases not isolated to a single view, as
there may be a problematic relationship between multiple views. Furthermore, the lay-
out, i.e., the positioning of elements relative to each other in a multi-view visualization
greatly impacts the design. For example, in the case of UML diagram layouts, Störrle
[98] found that good layouts were much easier to understand for novices.

Dashboards are used for several purposes. They provide a visual overview of key
insights into data that inform analysts and decision makers rapidly. Describing exactly
what constitutes a dashboard, and enumerating the different kinds of dashboards and
how they are to be used remains a large and difficult task. However, researchers have
made several efforts to consolidate and describe this design space. In order to enable
for specification, reasoning and refinement of such dashboards, knowing the design
space and its possibilities is essential.

Sarikaya et al. [84] analyzed multiple dashboards found “in the wild” to construct a

2

22 State of the Art

design space of dashboards. In this design space, they derived seven clusters of dash-
boards as seen in Figure 2.8. Furthermore, they mention that dashboards are venturing
more and more into the realm of infographics. One implication of this is that dash-
boards will have more artistic and flexible layouts.

Ondov et al. [75] conducted a series of graphical perception experiments to find
which compositions of multiple charts are effective for different tasks. Chen et al.
[20] investigated multi-view visualization design patterns from 360 multi-view visual-
izations collected from IEEE VIS, EuroVis and PacificVis publications from 2011 to
2019. They identified common multi-view visualization practices, view layouts, view
types, and correlations between view layouts and view types. They made these pat-
terns available through a multi-view visualization recommendation system where users
can interactively browse different designs. Hoffswell et al. [41] proposed a prototype
system for previewing and editing multiple visualization versions simultaneously. This
system is motivated by the analysis of 231 responsive news visualizations and inter-
views with journalists. Most of the existing work on dashboards presume the use of
a grid layout. However, with the onset of more “infographics-like” dashboards [84],
more flexible layout techniques are required.

Semantics must also be considered when evaluating a multi-view visualization de-
sign. Defining such semantics formally allows for automatic reasoning which may be
used to partially or fully aid the design process. For example, in graphic design tools,
conventional snapping creates a “gravity field" around geometric objects, making it
easier to place elements closely together. This snapping can also be done with regards
to semantics, which is exemplified by Hudson’s [43] introduction of semantic snapping
as an interaction technique for geometrically snapping objects together only if the ob-
jects are semantically related. Such semantic relations were also explored more closely
by Shadoan and Weaver’s [93] flexible interactive query language that allows for ex-
ploring semantic relations in multi-dimensional data by cross-filtering on attribute rela-
tionship graphs. Kosslyn [55] proposed a framework for evaluating the semantic clarity
of a visualization with five specific criteria. Furthermore, Kosslyn recommended this
framework for both single-view and multi-view visualizations. However, very few ex-
amples of its application to multi-view visualizations exist. Qu and Hullman [79] were
among the first to discuss ways to operationalize Kosslyn’s principles for multi-view
visualizations. They derived two constraints: C1 (encode the same data in the same
way), and C2 (encode different data in different ways). In their following work [80],
they conducted a Wizard-of-Oz study where Tableau users often and unknowingly re-
spected their proposed constraints C1 and C2. In this study, they found that participants
were highly positive to having a consistency checker tool to inform about violations of
these constraints. While these works explore the use of semantics to aid and guide vi-
sualization design, they do not yet provide a realized approach to reducing semantic
conflicts between multiple views. In paper B, we provide such an approach that is able
to both detect and resolve potentially undesirable semantic relations between views by
making targeted changes to individual views.

2

2.3 Layout Strategies 23

2.3 Layout Strategies

With improvements in technologies and computing power, multi-view visualizations
are becoming ubiquitous. A multi-view visualization may be a simple visualization
dashboard, or several views scattered across multiple windows, screens, or even sepa-
rate heterogeneous devices. For all these use cases, the multi-view visualization must
have a layout strategy. This strategy has a high impact on the aesthetic qualities of the
design, and emphasis on certain parts of data.

Simple strategies such as juxtaposition [101], where elements are simply placed
side by side do not always suffice when there are multiple heterogeneous chart types
or devices. For such cases, layouts are often specified manually. This manual layout
specification process was simplified by Feiner [31] who proposed the use of a grid.
To this day, using an underlying grid to position views is widely used in many areas.
Automatic generation of layouts for heterogeneous views is a difficult problem. Lok
and Feiner [62] investigated several techniques for automatically generating such in-
formation presentation layouts. They categorize layout techniques as either constraint
satisfaction or machine learning techniques. While there are layout strategies for single
visualizations, we will focus on only layout strategies for multi-view visualizations.

2.3.1 Content-Aware Strategies

Multi-view visualization layouts typically position views with regards to their bound-
ing geometries. This is most commonly found in grid layouts used in most applications
such as Tableau [97]. However, some approaches attempt to position views accord-
ing to their contents, rather than bounding boxes. The technique dubbed content-aware
layout by Ishak and Feiner [44] aims to position several windows efficiently accord-
ing to their contents. Steinberger et al. [96] proposed a dynamic window management
technique that positions windows based on coherency between the information shown.
Similarly, Haraty et al. [38] optimizes windowing layouts, but with a genetic algorithm
that considers the specific task at hand. Zheng et al. [117] proposed an approach to
generate high quality, content-aware magazine designs with a deep learning generative
model trained on a large magazine layout dataset. While these approaches offer means
to position elements by contents, they do not explore such content-aware layouts ap-
plied to small-scale information visualization dashboards. In paper C, we address this
problem with an approach that transforms a dashboard with an underlying grid layout
into a dashboard with a content-driven layout that positions elements by their contents,
rather than proxy geometries.

A layout that positions elements with regards to their contents will often have less
superfluous white space than bounding geometry aware layouts. The problem of mak-
ing a layout that positions elements according to contents can be seen as a problem
of white space minimization. This problem was explored in a different context than
multi-view visualizations. In order to reduce loss of physical fabric while cutting, Al-
bano and Sapuppo [4] explored heuristic methods for positioning irregular 2D shapes
with a minimal amount of white space. Bouganis and Shanahan [15] used computer vi-
sion techniques to minimize white space in layouts with varying shapes, on both regular
and irregular surfaces. The two latter approaches focus on optimal packing, but do not
provide means for controlling the final layout and the positions of elements in relation

2

24 State of the Art

Figure 2.8: Here we see how an illustration has been compacted by its content with the force-
directed adaptive approach by Ali et al. [5], where each element is modeled by convex bound-
ing geometry.

to each other. In paper C, we allow for such control of element placements by let-
ting the designer first specify a grid layout which implicitly contains a desired ordering
of elements. This grid layout is then automatically transformed into a content-driven
layout that respects the original arrangements.

Content-aware constraint based layouts have been proposed in several works. These
layouts typically simulate all shapes as physical objects colliding with each other. In
other words, the common force-directed layout approach [33] is a well-suited candi-
date for running such a simulation. This layout is typically used in conjunction with
other constraints to achieve a desired result. While the most common application of
a force-directed layout is graph drawing, it is not surprising that it has a much wider
range of applications, such as visualizing biological pathways [34], improving Euler
diagrams [69], rendering Lombardi-style graphs [21], targeting network spatialization
[46], and rapidly visualizing large networks [16]. Dengler et al. [25] utilized a sim-
ple force-directed layout to generate diagram layouts satisfying both geometric and
aesthetic/perceptual constraints. Furthermore, Ali et al. [5] utilized a force-directed
layout to generate a content-aware layout of illustrations, by modeling each element
by its convex hull. While modeling each element as a convex hull is convenient for a
force-directed layout, it is also imprecise and unreliable for more irregular shapes, es-
pecially with concave regions. In paper C, we address this shortcoming by using an
image-based collision detection and avoidance scheme in a force-directed simulation,
enabling collision handling between even highly irregular shapes.

2.3.2 Automatic and Semi-Automatic Strategies

Other strategies for layouts typically apply higher-level aspects modeled as constraints
to generate a desirable layout. Such higher-level constraints can be used to automati-
cally achieve greater levels of aesthetics and refinement in layouts. These higher-level

2

2.3 Layout Strategies 25

aspects represent high-level conceptual information about an overall design. For ex-
ample, Jahanian et al. [48] quantified concepts from arts and aesthetics into a system
for automatically generating magazine cover designs. These quantified concepts were
leveraged further to create a recommendation system [47] adhering to intuitive higher-
level cues such as "formal" or "sporty". Yang et al. [115] proposed a system to auto-
matically generate layouts by leveraging expert-designed, topic-dependent templates,
and a computational framework for integrating and harmonizing high-level aesthetics
with low-level image features. Such constraints can also be modeled to be used within
the context of machine learning, as done by Li et al. [59] who provided LayoutGAN,
a generative adversarial network that allows for synthesis, modeling, and editing of ge-
ometric relations between 2D elements. In recent times, the use of sketching gestures
in interactive design has increased. Xu et al. [114] proposed an interface for beauti-
fying layouts by making relationships visible and editable through sketching gestures.
Following a similar line of thought, Sketchplorer [100] allows for sketch-based design
where each sketching gesture is automatically translated into potential local and global
improvements.

Due to people using a myriad of different screen sizes and devices, it is in many
cases expected that visualizations can automatically adapt their size and layout to fit
the target media, i.e., be responsive. Consequently, there is a body of work aiming
to make visualizations responsive. There are many different strategies to achieve this
responsiveness. Kim et al. [51] analyzed 378 pairs of large and small screen visualiza-
tions and proposed a characterization of their resizing strategies. This characterization
is based on observed changes in single elements upon changes to the overall design.
Andrews and Smrdel [6] leveraged principles of responsive web design to make vi-
sualizations responsive. Jacobs [45] proposed an approach for adapting grid-based
magazine layouts to different screen sizes. Schrier et al. [89] presented a system for
assembling documents from different sources into a size-responsive grid-based mag-
azine design. Dayama et al. [24] proposed means for conveniently and interactively
transferring the layout of one user interface to another.

Such automation of layout strategies is highly useful towards making more intricate
and aesthetic layouts available in visualization design environments. Existing research
in this field often focus on generating a good layout with certain characteristics from
scratch. However, the focus is rarely on improving existing designs by transforming
and improving an existing layout. In paper C, we enable this by providing an approach
for transforming the widely used, well-known grid layout into a more compact content-
driven layout with a similar placement of elements.

2

«If we hit that bulls eye, the rest of the dominoes should fall like a house of cards.
Checkmate.»

Zapp Brannigan

3
Chapter 3

Contributions

Visception

Semantic Snapping

Content-driven Layout

�������

�������

�������

Re�nement
& Aesthetics

ReasoningSpeci�cation

Figure 3.1: Overview of how we contribute to different aspects of multi-view visualization
design. The focus of this thesis starts with specification and reasoning, before progressing
towards refinement and aesthetics. Our work consists of approaches that have both theoretical
and implemented contributions.

This thesis presents approaches for designing multi-view visualizations, where each
individual approach contributes towards at least one of the following aspects of multi-
view visualization design: specification, reasoning, as well as aesthetics and refinement
as shown in Figure 3.1.

Our first contribution, namely Visception, focuses on all mentioned aspects of multi-
view visualization design, with a main focus on the specification of nested visualiza-
tions for non-experts. Based on our novel underlying Visception Tree data structure,
we present its implications and an accompanying visual builder. We then shift the focus
towards reasoning and refinement as we introduce semantic snapping, where the aim
is to guide non-expert users towards unambiguous multi-view visualization designs by
algebraically inferring and resolving potential design problems. Finally, we introduce
an approach that helps non-designer users achieve aesthetic, seemingly “hand-crafted”
multi-view visualization layouts by transforming an existing grid layout into a content-
driven force-directed layout.

In the remainder of this chapter, we outline the main achievements of this thesis
in three sections, covering our approaches for making expert multi-view visualization
design more accessible to non-experts.

3

28 Contributions

3.1 Nested Visualization Design for Non-Experts

Visception Tree

Visual Builder

Flexible Data Mappings

Re�nement
& Aesthetics

ReasoningSpeci�cation

Figure 3.2: Here we see a more detailed overview of how our first work on nested visualization
design addresses different aspects of multi-view visualization design.

In this first contribution, we address the full scope of this thesis with a framework
and accompanying visual builder for specifying nested visualizations as illustrated by
Figure 3.2. The Visception Tree data structure provides means for specifying and rea-
soning about nested visualizations. Our flexible data mappings makes a visualization
less dependent on specific data arrangements by including data wrangling operations as
part of a visualization specification. Finally, our visual builder incorporates the under-
lying specification and reasoning mechanisms into an interactive environment in which
users can create and refine high-fidelity aesthetic nested visualizations.

In Figure 3.3 we see the “At the National Conventions, the Words They Used”
visualization created by Mike Bostock in 2012 [70], using the D3 [14] library. If we
look closer and consider the dataset, which contains the number of mentions per word
per political party, we see that it consists of one circle per word, sized according to the

Figure 3.3: Here we see a visualization created by Mike Bostock in 2012 for The New York
Times [70]. It consists of circles – one per word, in a force-directed layout. The horizontal po-
sitions of the circles are determined by how “democratic” the corresponding word is. Within
each circle, there are two squares, clipped by their surrounding circle, with their widths pro-
portional to the number of mentions of the word.

3

3.1 Nested Visualization Design for Non-Experts 29

total number of mentions. Each circle is positioned and subdivided according to how
much its corresponding word is mentioned by democrats (blue) and republicans (red).
Most people would not be able to create this visualization by their own effort. Even for
experts, manual coding efforts with libraries such as D3 [14] would be necessary. If the
user is not able to code with such libraries, other options are necessary.

A user could instead try an existing visualization grammar to specify this chart.
However, these grammars are typically reserved for only specific kinds of charts, or
only conventional charts. Therefore, finding the correct grammar to express this can
be challenging, especially for non-expert users. Furthermore, to the best of our knowl-
edge, highly customized charts with the embeddings seen in Figure 3.3 are not express-
ible within existing grammars. Some grammars do utilize nesting, but are locked to
specific kinds of visualizations. For example, ATOM [76] leverages nested layouts to
express unit visualizations, while Product Plots [107] allow for composing layouts with
a limited set of primitives. Furthermore, HIVE [95] allows for nesting different layouts
within one another, with a main focus on composing space-filling rectangular layouts
for incremental exploration of large multivariate datasets. However, these approaches
all require a certain degree of coding expertise. Thus, a user may need a solution that
does not require coding or visualization expertise.

Software programs for interactively expressing visualizations, namely visual au-
thoring tools are highly useful for users without the design expertise and coding skills
required to express charts with a visualization library or grammar. Such visual au-
thoring tools provide support for generating visual elements that correspond to data,
as well as capabilities for flexible configuration of several aspects of a visualization.
Within the field of information visualization, several visual authoring tools have been
proposed. However, all visual authoring tools have limits to their flexibility and expres-
siveness, and often introduce their own set of concepts to be learned and utilized by the
user. For non-expert users, such concepts are more difficult to learn. Visual authoring
tools such as Data Illustrator [61], Charticulator [82], and Lyra [85] enable the speci-
fication of a wide range of visualizations, but still fail to express nested charts such as
the chart in Figure 3.3, or the unit visualizations produced by the ATOM [76] grammar.

We noticed the following gap in the current body of work: there were no visual
frameworks, grammars, or authoring tools able to flexibly express nested visualiza-
tions on a general level. To fill this research gap, we set out to create a framework and
a visual builder that would enable non-expert users to express such complex visualiza-
tions by re-using the same concept, namely nesting. Thus, the first contribution of this
thesis is a framework for expressing such nested visualizations. We made our frame-
work accessible to non-expert users by providing an accompanying visual builder, and
demonstrated its utility with examples created with our visual builder.

3.1.1 Nesting as a First-Class Operation

Before explaining the underpinnings of our contribution, we believe it is worthwhile
to first consider what is possible with nesting as a first-class operator. We begin by
reverse-engineering the visualization in Figure 3.3 into a nested visualization. First,
we see that each circle has an embedding within itself. This inner embedding always
contains two clipped rectangles, where the width ratio between them corresponds to the
ratio between the number mentions by democrats and republicans. The first step is to

3

30 Contributions

Figure 3.4: This figure shows a modern recreation, and alternate versions of “At the National
Conventions, the Words They Used” [70], created with our visual builder.

create this as a nested visualization. First, we create one circle per word, sized by the
total number of mentions, positioned along the x-axis by how “democratic” it is, i.e.,
number of mentions by democrats divided by total number of mentions. Furthermore,
these circles are positioned according to a force-directed layout to avoid overlapping
elements. The next step is to create two rectangles within each circle – one per political
party. In other words, a bar chart grouped by the attribute party. These bars are then
made width-proportional by mapping their widths to the number of mentions. From this
reverse-engineering process, we can see that this chart can be expressed by nesting a
bar chart within a plot of circles, followed by individual editing of mappings. Such use
of nesting as a first-class operator yields highly expressive and flexible chart definitions.
For example, in Figure 3.4 we see a modern recreation, and two alternate versions that
are generated only by editing the mappings of one chart in the hierarchy.

3.1.2 The Visception Tree

In order to realize nesting as a first-class operator, we proposed the Visception Tree
data structure (shorthand: VC-tree). This structure encapsulates a hierarchy of charts,
which provides precise control over data mappings at arbitrary hierarchical levels, and
implicit handling of nesting and deformation behaviors. Thus, the VC-tree enables
for concise expression of arbitrary hierarchies of charts, which can then be rendered as
corresponding nested visualizations. The most basic element of a VC-tree is a VC-node
(Visception Node), which encapsulates a chart with a set of VC-channels that control
style and layout parameters. For example, if we consider the circles of Figure 3.3, we

3

3.1 Nested Visualization Design for Non-Experts 31

see that the chart type is a plot of circles grouped by word since each circle represents
a word. Furthermore, when we consider the inner elements of each circle, we see that
they can be expressed as a bar chart grouped by party, where the fill color VC-channel
is also mapped to party, and the bar width VC-channel is mapped to the number of
mentions. We divide VC-channels into style channels shared across all charts, and
layout channels which affect the layout of specific charts or families of charts. Some
style channels within our framework are shown in Figure 3.6. Furthermore, a selection
of charts and accompanying layout channels realized within our framework can be seen
in Figure 3.5.

Lorem
ipsum

Figure 3.5: Here we see a selection of charts and accompanying layout channels within our
framework. A more comprehensive overview of all VC-channels can be seen in paper A.

Figure 3.6: This figure shows a se-
lection of style channels within our
framework, controlling the stroke,
and fill configurations of charts.

Tree Chart Operation

Before After
Tree Chart

Nest

Group

Layer (front)

Layer (back)

Delete

Figure 3.7: This figure displays all operations to
modify a VC-tree.

Visception Tree Specification: Our proposed VC-tree data structure makes it possible
to specify a nested visualization. In order to make it editable and suitable for non-expert
interaction, it is necessary to introduce means for modifying the hierarchical structure
of the tree itself. We introduced five operations to edit the hierarchy, which are all
illustrated and exemplified in Figure 3.7. A central underlying idea of this structure
is that the hierarchy corresponds to the rendered chart. We define that a chart B is
nested within chart A, if A is the parent of B in the corresponding VC-tree. Thus,
the act of adding a child to a VC-node corresponds to the nest operation as seen in

3

32 Contributions

Figure 3.7. Conversely, if a VC-node A is added as a parent of an existing VC-node
B, that corresponds to grouping B by A as shown in Figure 3.7. Furthermore, the
left-to-right order of VC-nodes in the VC-tree correspond to the front-to-back order
of the charts, meaning that the leftmost VC-nodes are always layered on top of their
rightward neighbors. This rendering order is again illustrated by the layer operation
shown in Figure 3.7. It is also possible to delete a VC-node from the hierarchy, which
removes the corresponding chart and its children from the visualization, as depicted in
Figure 3.7.
Visception Tree Rendering: The rendering of the VC-tree as a nested visualization
is done by rendering the VC-tree hierarchy in a top-down fashion. In other words, the
process always starts with rendering the root VC-node such as the highlighted VC-node
in Figure 3.8a. We then render its descendants recursively in a top-down fashion until
all VC-nodes are rendered. When a VC-node is rendered, it always has one parent
space per graphical shape of the chart it is nested within. For example, if we consider
the bar chart in the hierarchy seen in Figure 3.8a, its parent spaces are the eight arcs
of the pie chart corresponding to its parent VC-node. Since the rendering of all charts
is done on a purely geometric level, some charts are specified to be deformable (for
example, the bar charts seen in Figure 3.8a and 3.9), while others are fitted as the pie
charts in Figure 3.9. This geometric handling of nesting behavior ensures that our VC-
tree data structure is not limited in terms of depth of nesting, but only in terms of what
is practically possible to render on a computer.

(a) Since the immediate parent space of the
columns chart is an arc, the bars are deformed into
arcs that fit within the parent arcs.

(b) As the parent’s space is Cartesian, the bars are
fit into the Cartesian coordinate system of the par-
ent marks.

Figure 3.8: Two examples of nesting with different types of parent spaces. If the parent space
is deformed, each bar of a columns chart is also deformed as seen on the left.

3

3.1 Nested Visualization Design for Non-Experts 33

Figure 3.9: Here we see another example of how deformation and nesting works within the
Visception framework. Notice how all the pie charts are not deformed, but fitted, i.e., they
preserve their shapes but are positioned to fit within the shapes. On the other hand, bar charts
are deformed by their parent shapes as seen in the chart in the middle.

3.1.3 Flexible Data Mappings

Here, we detail four approaches for flexibly adapting visualizations to data, as opposed
to adapting and rearranging data to fit the visualization environment. There are many
opportunities and challenges when it comes to mapping data to visual elements, some
of which we address with flexible data mapping mechanisms within our framework.
Visualization environments are typically centered around the creation of visualizations,
and assume that the data format is as expected. Data wrangling, i.e., the steps involved
in making data ready for analysis has long been an elephant in the room of data analysis,
tediously consuming extraordinary amounts of time [50].

In our framework, we address data mappings from four different perspectives: (1)
We provide more mapping opportunities in the context of nesting by expanding the def-
inition of what constitutes a data-mappable channel, and (2) enable for rapidly chang-
ing the visual representation while preserving data shown with our proposed set of
VC-channel equivalencies. Furthermore, we (3) make it possible to specify charts less
dependent on a specific tabular arrangement by providing four kinds of different data
mappings to group charts by. Finally, we (4) facilitate handling of missing data in the
context of nesting, by enabling for specification of mapping sparseness.
Using the Parent Datum: Within the context of nested visualizations, chart attributes
which are typically considered as “global” become mappable to the parent datum. A
typically “global” attribute can be mapped to data dimensions its ancestors are grouped
by. This makes it possible to achieve new mappings which are typically not considered
for non-nested visualizations, leading to greater design flexibility. Examples of this
include using a categorical dimension to enable or disable effects such as drop shadows,
or adjusting the drop shadow color of a chart based on its parent datum as seen in Figure
3.10
VC-channel Equivalencies: There are many different ways to show the same data,
and it is not always easy to know beforehand which representation is the best. It is
therefore ideal to be able to rapidly toggle between different designs. To enable this,
we establish a set of VC-channel equivalencies to ensure that mappings are preserved
upon changing of the chart type. To illustrate this with an example, consider the two
lower charts of Figure 3.4. The only difference between these two charts is the chart

3

34 Contributions

Figure 3.10: Here we see a nested chart,
with circles grouped by body-style, and
then again one circle per row in the
dataset. With this grouping, it is there-
fore also possible to map body-style to
the drop-shadow color of the inner cir-
cles.

Figure 3.11: This figure illustrates an alternate
design of “At the National Conventions, the
Words They Used”, and the utility of the one
data mapping, where it is used to nest a proxy
element with a hexagon shape within each cir-
cle, and nest a rectangle which is used as a label.

type of the inner elements, which is circles to the left, and a bar chart to the right. It is
therefore possible to go from one representation to the other by only changing the chart
type.
Arrangement-Agnostic Mappings: Most visual authoring tools and visualization li-
braries are tied to a specific kind of tabular data arrangement. Typically, examples
shown are created from cleaned datasets, arranged in the way the authoring tool or
visualization library expects it. However, datasets found “in the wild” are often not
arranged in this manner. For example, consider how a dataset including the three di-
mensions: income(0-20), income(21-40), income(40+), could instead have the follow-
ing two dimensions: income, age group. Within the context of nested visualizations, it
might be desirable to have a certain kind of grouping at one level, and a different group-
ing below. For example, consider a streamgraph showing some tabular data. Here, it
is possible to either create one stream per distinct value of a dimension, or for a selec-
tion of dimensions, create one stream per dimension. In response to these challenges,
we introduce four different kinds of data mappings by which a chart can be grouped:
dimension, all, identity, and monolith. The dimension data mapping corresponds to
the SQL command GROUP BY, and thus produces one datum for every distinct value
of that dimension in the dataset, and amounts to aggregating the data by that dimen-
sion, which is very frequently done in both visualization and data analysis. The data
mapping all produces one datum for every row in the dataset, and is useful when it is
desirable to create one graphical mark per row as done with for example unit visualiza-
tions [76]. Identity simply produces one datum, and is useful especially in the context
of nesting, as it allows for creating dummy elements, which can be styled and used to
embellish the chart as seen in Figure 3.11. Finally, the monolith mapping lets the user
specify a selection of dimensions, where one mark is created for each dimension. This
mapping is especially useful when the dataset contains multiple numerical dimensions

3

3.1 Nested Visualization Design for Non-Experts 35

Figure 3.12: This figure illustrates the effects of using a sparse and non-sparse mappings.
To the left, we see a non-sparse mapping, which makes the visualization include the missing
bars. On the right, these bars are not visible due to the mapping being sparse, which makes it
difficult to compare across dimensions.

which are to be represented as individual streams in a streamgraph. These mappings
allow for flexible specification of nested visualizations with varying data mappings.
Dealing with Missing Nested Data: In the context of nesting, there is a more fre-
quently occurring problem of missing data. When creating a chart grouped by a certain
dimension, each graphical mark of that chart represents a certain slice of data. For
example, a dataset may be grouped by gender, resulting in two graphical marks. How-
ever, if there are only males with the hair color blue, the hair color blue is missing from
the female subset of the dataset. Thus, when a dataset is grouped by a dimension, there
may be missing data within each subset. It is then an open question whether that miss-
ing data should be shown or not. In response to this problem we introduced additional
mapping mechanisms to specify whether such missing data should be shown. Thus, we
specify that the all and dimension groupings can be either sparse or non-sparse. This
distinction only makes sense if the chart is nested within another chart. A non-sparse
data mapping is where all missing values are included. If the data mapping is sparse,
it excludes missing data items. This is illustrated by Figure 3.12, where the result of a
non-sparse mapping is shown to the left, and a sparse mapping is shown to the right.
When setting up visualizations such as small multiples, it is especially useful to include
missing items to allow for proper comparison as shown on the left in Figure 3.12.

Figure 3.13: A screenshot of all views within Visception. These views enable the user to
express and modify arbitrary hierarchies of nested visualizations.

3

36 Contributions

3.1.4 Visual Builder

Having specified the VC-tree data structure and its accompanying flexible data map-
ping and rendering mechanisms, we set out to make it available as an interactive visual
builder. Mapping data to charts or channels is the most basic operation of our frame-
work. Since all drag operations then originate from the columns view, we placed it
centrally, in direct contact with every other view as seen in Figure 3.13.
Mapping data to charts and channels is done by dragging data that is a potential chart
grouping or channel mapping from the columns view, and dropping it on an eligible
target that can properly use the mapping. For example, the all mapping can not sensibly
be applied to a channel, but it can be applied to a node as a chart grouping. On the top
of the columns view we see the all and identity mappings (see top of columns view in
Figure 3.14b), which are only mappable as chart groupings. When dragged, they can
only be dropped as chart groupings on the canvas view or outline view. Each column in
the columns view can be clicked and expanded to show one tile per aggregation, which
can be dragged and accordingly mapped to a channel in the channels view. Individual
columns expose: the monolith mapping if a drag is initialized on the corresponding
icon (), a non-sparse mapping if a drag is initialized on the non-sparse mapping icon
(), a sparse mapping if a drag is initialized on the column itself, or the sparse
mapping icon ().
Grouping, nesting, and layering can be specified by dropping a data grouping onto
the outline view, or by direct interaction with the outline view itself. In the case of
modifying the VC-tree structure by dragging of data, a data grouping can be dragged
and then dropped on the side of a node in the outline view. A drop on the top of the node
results in a group operation, which creates a node and sets it as the parent of the target.
Our Titanic result demonstrates this operation both hierarchically and vi-
sually (Figure 3.16 and 3.17). A drop on the bottom of a node triggers
the nest operation, which adds a new child node to the parent node. Visu-
ally, this corresponds to creating a new nested chart within every graphical
mark of the chart receiving the drop. Finally, a drop on the left or right
side creates a new node which is a sibling of the target node, where the leftmost nodes
are always layered on top of their right neighbors. These operations are illustrated in
the figure on the right side of this page.
Editing of individual channels is done by clicking on a channel in the channels view,
and interacting with the accompanying pop-up widget. For example, if the stroke width
channel is clicked, a slider shows up. Another example is the fill color channel, which
provides a color picker if the channel is not mapped to data, and a color range picker if
the channel is mapped to data.

Workflow: The workflow of our builder can be summarized as follows: First, the user
selects a custom or pre-defined dataset as shown in Figure 3.14a. Then, only the canvas
view and data view are made visible to the user (Figure 3.14b). The initial chart is then
created by initiating the drag of a chart grouping as shown in Figure 3.14c. A chart is
then created, and the outline view and channels view are made visible as (see Figure
3.14d). The workflow then consists of making incremental edits to the hierarchy in the
outline view, or configuring the chart type, or individual channels of a single node, until

3

3.1 Nested Visualization Design for Non-Experts 37

(a) The user can select, or load a template
csv dataset.

(b) After loading a dataset, the user can see
the data dimensions, and an empty canvas.

(c) When initializing a drag, only the canvas is high-
lighted as a drop zone.

(d) After creating a chart, the outline and channels
view are made visible. When dragging a data dimen-
sion, nodes in the outline view and channels in the
channels view, are highlighted as drop zones.

Figure 3.14: Visception, getting started step by step.

a desired result is achieved. Examples of this workflow are illustrated in the following
section.

3.1.5 Results

Having created the framework and accompanying builder, we set out to generate a
set of results to demonstrate the expressiveness of our approach. In this section, we
present two selected examples that demonstrate how a relatively simple hierarchy of
charts can be used to express an otherwise complicated highly detailed visualization.
The charts in these examples are difficult to specify with other approaches, but are
concisely expressible by nesting of charts.
Suicide rates: In this example we explore the following dimensions of Kaggle’s sui-
cide rate dataset: country, year, generation, sex, and suicides per 100,000. The goal of
this visualization is to show global trends over time across several countries and gener-
ations, focusing on the countries with the highest suicide rates. In Figure 3.15, we see
a chart with stacked bar charts enclosed within circles. This is achieved by first creat-
ing a single chart with one circle per country, and mapping the circle size to the sum of
suicides per 100,000. Then, we utilize the nest operation to create a bar chart within

3

38 Contributions

each circle, and size each bar according to the sum of suicides per 100,000. Finally, we
embed a vertically stacked bar within each bar of the bar chart. These three operations
result in the hierarchy displayed by the tree on the lower right of Figure 3.15.

Figure 3.15: Suicides per country over time, by generation, over time.

Titanic: In this example we investigate the survival rates on the Titanic by sex and age
group by expressing a unit visualization with the nesting mechanisms of our approach.
The dataset contains the following dimensions: age group, sex, and survival status. We
leverage the unit chart type to show both global patterns and individual details. First,
we create a bar chart grouped by age group, where every bar is the same height due
to no height mapping being specified. Then, within that chart, we nest a unit chart,
creating one unit per row in the dataset. This unit chart is again sorted by sex and
survival status by applying the corresponding mapping to the sorting channel. In order
to generate custom shapes within each unit, we nest a plot chart within them, and map
the shape type and opacity to survival status. Finally, we map fill color to sex. The final
result appears as a “unit stream” and can be seen in Figure 3.16. Next, we wish to look
at the results within each gender group by separating the “unit stream” into two – one
per gender. This is easily achieved with our approach, as we only need to insert a rows
chart grouped by sex into the hierarchy, which is achieved by using the group operation
on the unit chart, leading to the two separate “unit streams” shown in Figure 3.17.

3

3.1 Nested Visualization Design for Non-Experts 39

Figure 3.16: A “unit stream” by age group and gender.

Figure 3.17: Two “unit streams” by gender, then age group.

3.1.6 Discussion and Limitations

The framework of Visception is based on the use of a VC-tree to encapsulate a nested
visualization. The top-down nature of our nesting mechanism, where each chart is fit-
ted within the shapes of its parent chart introduces some limitations. More specifically,
it does not support layouts where the shapes of the parent charts are influenced by their
child charts. As our approach only targeted tabular data, we did not yet explore means
to incorporate explicit node-link diagrams. Furthermore, we have not explore means
to provide linking between elements and accompanying charts such as parallel coordi-

3

40 Contributions

nates, parallel sets, and matrices. However, we believe our overall program architecture
could be molded to support such constructs. The feature these charts have in common
is that they have a potentially very large set of data groupings, which is challenging
to embed within our architecture and visual builder. For example, a parallel set chart
has a potentially infinite set of axes, each with its own grouping and mappings. The
intricacies of these different charts were not explored in full in this work.

While we provide flexible data mappings that support different arrangements of
tabular data, we did not explore means to integrate these mappings with different data
representations such as network and set data.

Not surprisingly, we experienced more performance challenges with more complex
hierarchies of data and visual elements. Deep data aggregations on large datasets are
costly, and may require an independent server to properly process. Similarly, if the re-
sulting visualization had too many SVG elements, especially with embellishments such
as drop shadows, interaction and zooming became increasingly choppy. Although great
efforts have gone into optimizing the SVG rendering engines built into most modern
browsers, we believe that using GPU-accelerated HTML5 canvas for rendering could
remedy some of these performance issues.

3.2 Expert Visualization Design for Non-Experts

Semantic Space

Work�ow

Operations

Algebraic Relations

Re�nement
& Aesthetics

ReasoningSpeci�cation

Figure 3.18: Here we see a more detailed overview of how our second work on guided multi-
view visualization improvement addresses different aspects of multi-view visualization design.
The core idea of our approach was to enable for automatic reasoning and refinement of multi-
view visualizations design.

Our second contribution focuses on guided multi-view visualization refinement, ad-
dressing the latter two aspects of multi-view visualization design as shown in Figure
3.18. The initial idea of our work was to establish a semantic space in which a multi-
view visualization design could be placed. Its position in this space is defined by our
algebraic relations, which indicate a certain degree of potential “badness” in a design.
As a consequence of these well-defined relations, we also defined operations to remove
them, thus improving the design. We made these relations and operations available to
users by packing them into a workflow involving only simple user interaction.

3

3.2 Expert Visualization Design for Non-Experts 41

Most visual authoring tools focus mainly on ease of use and range of expression.
The focus is rarely on guiding the design process according to visualization design
knowledge and guidelines to avoid potentially bad design decisions. Such visualization
design knowledge and guidelines are often presented on their own, and are seldom
packaged into interactive approaches more accessible to non-expert users. Furthermore,
such guidelines are rarely known by non-experts who are perhaps most in need of
them [30]. An example of such a guided approach is the mechanism of linting applied
to visualization, introduced by McNutt [67]. Such automatic guidance has also been
explored in the context of multi-view visualizations by Qu and Hullman [79, 80], who
found through interviews that users would appreciate a tool to surface warnings in the
case of potential design violations. While a single visualization linter is analogous to a
spell checker, a multi-view visualization linter that detects problems between multiple
visualizations is analogous to a grammar checker. To the best of our knowledge, there
were no realization of such a visual “grammar checker” that detects design problems in
a multi-view visualization, beyond the hypothetical linter discussed by Qu and Hullman
[80].

Consistency

C
om

pa
ct

ne
ss

1 2
2*

Semantic Space

RESULT

INITIAL

Result

R: Multiples

O: Integrate

O: Differentiate

R: Confuser

22*

1

O: Integrate

Compact, but
difficult to read

Less compact,
but easier to
read

Figure 3.19: Semantic snapping is the process of iteratively improving the compactness and
consistency of a multi-view visualization. In this example we see the 2016 US Election poll
percentages and pollsters. With our underlying approach, we identify (1) a confuser relation
since the two views are using the same color to show different data, and (2) a multiples relation
between the two line charts as they are only different in terms of their y-axis data mapping.
These relations are then resolved through corresponding operations of resolving the color con-
flict between the bottom line chart and right scatter plot, and integrating the line charts into a
single multi-line chart, leading to the final design seen on the upper right. The semantic map
to the right illustrates the path through the semantic space.

3

42 Contributions

3.2.1 Semantic Snapping

In response to this research gap, we created an approach that helps users make bet-
ter design choices by informing about potential design conflicts between views, and
providing resolutions for violations accessible through a single click. This work is in-
spired by the above mentioned works, and aims to establish an algebraic model similar
to that of Kindlmann and Scheidegger [54], leveraging it to find and resolve poten-
tial problems within a multi-view visualization design as demonstrated in Figure 3.19.
Our approach can be seen as analogous to snapping, which typically helps users snap
slightly misaligned shapes into perfect alignment. Similarly, our approach of seman-
tic snapping corrects semantic misalignments between visualizations. We illustrate this
concept in Figure 3.20, where the leftmost bar charts are showing the same quantity,
but with different y-axes. These charts are initially not aligned semantically since they
are showing the same quantity on the y-axis with different scales. We then semanti-
cally snap them together by making the y-axes use the same scale, as shown by the top
right charts. To enable the user to do this in a guided fashion, it is necessary to define
how to detect such potential problems, and how to resolve them.

Consistency

C
om

pa
ct

ne
ss

Semantic Space

Op. 2

Op. 3

Op. 1
Redundant

Inconsistent Consistent

Compact

}
}
}

}

Op. 4:

Same grouping,
different data on y-axis

Same grouping,
different data on y-axis

Inconsistent data domain
(y-axis value range)

O: Homogenize

Su
m

 W
ho

le

30

Su
m

 W
ho

le

3010

Su
m

 P
ar

t

30

Su
m

 P
ar

t

R: Multiples

R: Multiples

R: Multiples

Figure 3.20: Here we see a conceptual overview of our semantic snapping approach. To the
left, we see a semantic space in which a multi-view visualization design is placed according
to its degree of compactness and consistency. Operation 4 displays the homogenize operation
made available as a result of a multiples relation (the two y-axis scales are different, even
though their underlying data represents the same quantity).

3.2.2 Semantic Space

Our approach detects problems by searching for relations between views in a multi-
view visualization, and resolves them with operations that make appropriate modifica-

3

3.2 Expert Visualization Design for Non-Experts 43

10

sc
or

e

category

3

ra
nk

category

Canvas

View 2

View 1 G C D V
category category x-position

y-position

light blue

rank

--

bar order

bar height

bar fill

category

category

category category x-position

y-position

dark blue

score

--

bar order

bar height

bar fill

category

category

v = 1d ≠ 1c = 1g = 1

d ≠ 1))D ≠ 0g = 1 c ((c = 1V VE E

Figure 3.21: Here we see two views and their corresponding (G, C, D, V) tuples for the three
channels representing the y-axis (bar height), x-axis (bar order), and fill color. At the bottom,
we see the comparison tuple of the two highlighted tuples, which results in these two views
being identified as multiples (1) same grouping due to satisfying the corresponding predicate
on the bottom.

tions to the design. We describe this process in terms of a semantic space, in which a
multi-view visualization is placed according to its levels of consistency and compact-
ness, which are derived from detected relations, i.e., inconsistencies and redundancies
between views. For example, if two views are showing the same data in the same way,
there is a redundancy relation between them. If we remove one of these views, we also
remove the redundancy relation from the design. The removal of this redundancy im-
plicitly moves the design along the compactness axis in the semantic space. Thus, a
revision may improve the consistency and/or compactness of the design. We model
potential problems as algebraic relations between attributes of individual views. Simi-
larly, solutions to these potential problems are modeled as modifications to attributes of
at least one of the views involved in the relation, such that the relation ceases to exist.

3.2.3 Detecting Potential Problems as Relations

The core idea behind our approach was inspired by Qu and Hullman’s evaluation con-
straints [80] and Kindlmann and Scheidegger’s algebraic model [54]. In our work, we
aimed to make such constraints and rules applicable within the context of multi-view
visualizations. Thus, we set out to establish a detection mechanism based on the two
following assumptions: (1) problems can be defined as relations between views, and
(2) these relations can be identified by comparing mappings across different views.

In order to compare sets of visual encodings across views, we represent each en-
coding as a tuple (G,C,D,V), where G is the chart’s grouping, C is a channel, D is the
data shown by the channel, and V is the visual result of the channel’s mapping. Each
view is consequently represented as a set of such tuples, i.e., one tuple per channel.
For example, consider Figure 3.21, where we see how each of the charts are associ-
ated with three tuples. View 1 in this figure has the three tuples (category, bar order,

3

44 Contributions

A

C D

B

0
50

100
150
200
250

fou
r six fiv
e

thr
ee

tw
elv

e
tw

o
eig

ht

av
g

ho
rs

ep
ow

er
:

0

10k

20k

30k

fou
r six fivethr

ee
twelv

e two
eig

ht
av

g
pr

ic
e:

0

10k

20k

30k

fou
r six fivethr

ee
twelv

e two
eig

ht

av
g

pr
ic

e:

0

10k

20k

30k

fou
r six fivethr

ee
twelv

e two
eig

ht

av
g

pr
ic

e:

20
40
60
80

100

two four 0

av
g

pr
ic

e:

R: Partial
redundancy R: Multiples

R: Multiples

R: Multiples

Figure 3.22: Here we see four redundancy relationships: There is a partial redundancy between
A and C, since A is the same as C, but without the fill color mapping. (2-3) A and D, as well
as C and D are multiples with different groupings, but all showing avg price along the y-axis.
Furthermore, (4) A and B are multiples with the same grouping, showing different data along
the y-axis.

category, x-position), (category, bar height, rank, y-position), and (category, fill color,
0, light blue), where “0” (marked as “--” in the figure) denotes that the mapping is
non-existent.

With each single view defined as a tuple, we define relations as comparisons be-
tween sets of tuples across multiple views. Each comparison is represented as a com-
parison tuple (g,c,d,v), where each lower case g, c, d, v corresponds to the comparison
of the two tuples between the views. Matching values are represented as 1, while mis-
matching values are represented as 0. To illustrate this, consider the two highlighted
tuples in Figure 3.21: (category, bar height, rank, y-position) and (category, bar height,
score, y-position). If we compare these two, we see that they have the same values
for G, C, and V , but different values for D. Hence, the comparison tuple evaluates to
(g = 1,c = 1,d = 0,v = 1).

We can now define relations based on the existence or non-existence of a certain
comparison tuples across two views. Consider the two highlighted tuples and cor-
responding comparison tuple on the bottom of Figure 3.21. This comparison tuple
(g = 1,c = 1,d = 0,v = 1) satisfies the formula below, which is a specification of the
multiples relation. These relations inform about the degree of inconsistency and re-
dundancy in a multi-view visualization. The first four relations seen in Table 3.1a-d
represent different degrees of redundancy. A full redundancy is present if two charts
are exactly the same, while a partial redundancy is present if all the data shown by one
chart, is also shown by another chart which is showing more. Two charts are multiples
if they have the same grouping, but are showing different data with the same channel, or
if they are differently grouped, but are showing the same data with the same channel.

3

3.2 Expert Visualization Design for Non-Experts 45

Relation Specification Illustration Possible
Operations Illustration

(a) Full redundancy g = 1∧∀c(c = 1→ d = 1) D1D1 Delete one D1

(b) Partial redundancy g = 1∧∀c((c = 1∧d ̸= 1)→∃!D = 0) ∈D2D2 D1D1
Integrate, or
delete D1 view

D2

(c) Multiples (1)
same grouping

g = 1∧∃c((c = 1∧∃D ̸= 0)→ d ̸= 1) D1 D2 Integrate or
homogenize D1

D2

(d) Multiples (2)
same data

g ̸= 1∧∃c((c = 1∧∃D ̸= 0)→ d = 1) D1 D1 Homogenize D1 D1

(e) Hallucinator g = 1∧∃c(c = 1∧d = 1∧∃D ̸= 0∧ v ̸= 1) D1 Homogenize D1

(f) Confuser ∃c(c = 1∧d ̸= 1∧ v = 1) D2D1 Differentiate D1 D2

Table 3.1: Here we see all relations and operations specified in terms of our model. Relations
a-d represent different degrees of redundancy, while the relations e-f represent respectively
when the same data is shown differently, and when different data shown the similarly.

four

six
five

three

twelve

two

eight

four

six

fiv
e

three
twelve

tw
o

eig
ht

(a) Here we see two charts with
a partial redundancy relation.

The pie chart on the left is
showing all the data shown by
the bar chart on the right, in

addition to showing data via the
fill color channel.

four

six
five

three

twelve

two

eight

(b) Result of an
integrate operation

wherein the fill color
mapping is transferred
from the pie chart to
the bar chart, before

also removing the pie
chart.

four

six

fiv
e

three
twelve

tw
o

eig
ht

(c) Result of an
integrate operation

where we remove the
chart showing the least
data, so that only the

pie chart remains.

Figure 3.23: This figure shows two ways to integrate charts when there is a partial redundancy
present. This operation ensures that all the same data is still shown, but only once.

The hallucinator relation (Table 3.1e) corresponds to Kindlmann and Scheidegger’s
hallucinator for single view visualizations, and is present if two charts are showing the
same data differently. Conversely, the confuser (Table 3.1f) occurs when two charts are
showing different data in the same way, and is a multi-view equivalent of Kindlmann
and Scheidegger’s definition of a confuser.

3.2.4 Resolving Potential Problems with Operations

Since our relations describe potential anti-patterns, operations are potential solutions to
those anti-patterns. Thus, we proposed the following understandable and predictable
operations:
O1: Delete is made available if there is a full or partial redundancy. In other words,
if one chart is showing only data that is shown by another chart, one of them can be

3

46 Contributions

(a) Here we see two charts that
are similarly grouped multiples. (b) Result of a homogenize operation which

makes the y-axes use the same scale.

(c) Result of an integrate (group)
operation, which creates a grouped

bar chart.

(d) Result of an
integrate (stack)

operation, creating a
stacked bar chart.

(e) Result of an
integrate (mirror)

operation, creating a
mirrored bar chart.

Figure 3.24: This figure depicts four different operations that can be performed in response
to a multiples relation. (a) shows the original two charts, while b-e shows the outcome of
performing the operations on the original chart.

deleted as shown in Table 3.1a and Figure 3.23.
O2: Homogenize makes dissimilar views more similar, and can be used in response to
multiples (shown in Figure 3.24b-e) and hallucinator relations as seen in Table 3.1c-e.
O3: Differentiate makes similar charts more dissimilar, and is useful for resolving con-
fuser relations (See Figure 3.1f). For example, if a chart is using the same color scheme
to show different data, the differentiate operation proposes alternate non-conflicting
color schemes to the user.
O4: Integrate can be used to combine several views into a single view, and applies if
the views are multiples, or in the case of a partial redundancy. In the case of multi-
ples with the same grouping (Table 3.1c), there are four ways of integrating the charts:
overlay, group, stack, and mirror. The operations group, stack, and mirror are exem-
plified in Figure 3.24c-e, while we can see an example of the overlay operation to the
left in Figure 3.19. In response to a partial redundancy, where one chart is showing
only a subset of data shown by another, two options are available: We can either delete
the chart showing the least data and keep the other, or transfer mappings such that they
are showing the same amount of data, and delete the chart originally showing the most
data.

3.2.5 Demonstration and Workflow

We demonstrated the viability of our approach with several case studies. Our aim was
to make non-expert users informed and aware of potential problems, and enabled to
resolve them if desired. In Figure 3.25, we (a) see a button on top of each chart, when

3

3.2 Expert Visualization Design for Non-Experts 47

(a) Here we see a multi-view visualization consisting of two bar charts, showing sum of video
game sales in Europe and North America. The buttons on the middle of each chart expose

potential operations when clicked.

(b) Here, the user is asked if the
domains of the two y-axes are

showing the same quantity. If the
user clicks “Yes”, the scales are

equalized. (c) Here we see three potential integrate operations
available to the user. If the operation is clicked, it

applies the according revision to the design.

Figure 3.25: These figures provide an overview of how the process of semantic snapping is
made available to the user through our interface, which consists of a single clickable button
attached to each individual view.

this button is clicked, the user is presented with available operations (b-c) as seen in
Figure 3.25. Thus, we show an initial design with several problems, and describe how
our relations and operations help guide the user towards a refined, more consistent and
compact design. In the design environment, all relations and accompanying operations
are pre-computed upon any change to the multi-view visualization design.

COVID-19 in Germany

In this case study, we show an initial problematic design of a COVID-19 dashboard
showing six charts. The initial layout of Figure 3.26 consists of two bar charts, two
pie charts, and two stacked area charts. The two bar charts show the number of deaths,
and number of cases by age group, while the two stacked area charts are showing the
number of deaths and cases over time. The two pie charts are showing the number of

3

48 Contributions

����
�

��������������

M F

M F

���������

����������

���� ����

���������

����������

O: Homogenize

R: HallucinatorR: Hallucinator R: Hallucinator

R: Multiples O: Integrate

RESULT

INITIAL
O: Differentiate

R: Confuser

O: Integrate

R: Multiples

O: Homogenize

Consistency

C
om

pa
ct

ne
ss

1 2 3 4 5

6

Result

Semantic Space

1

234

5

6

Figure 3.26: Case study workflow demonstrating semantic snapping to resolve a COVID-19
dashboard with a confuser, several hallucinators and two multiples relations. We resolve these
relations with a series of operations that include homogenize, differentiate, and integrate.

deaths and cases across genders.
Looking at this initial design, there are several problems which are automatically

detected by our system. (1) There is a confuser between the middle stacked area chart
and the lower pie chart, since they are showing different data with a similar blue color.
(2) There is a hallucinator between the two pie charts, as the charts are color-mapped
to gender with two different color schemes, i.e., they are showing the same data differ-
ently. (3) There is a hallucinator between the bar chart showing the cases by age group,
and the area chart showing the cases over time as they are both grouped by age group,
but are using different color schemes. (4) Similarly, there is a hallucinator between the
two leftmost charts as they have the same grouping showing the same data, but with
different color schemes. (5) The two bar charts are multiples as they have the same
grouping, and same y-axis. (6) Similarly, the two area charts are multiples due to their
identical groupings by age group, and x-axis mapping to date.

With our approach, the user is able to resolve all these relations with the following
operations: First, the pie charts have their colors equalized with the homogenize op-

3

3.3 Artist Designs for Non-Artists 49

eration, which also resolves the confuser between the lower pie chart and area chart.
Next, the color mappings of the two lower area charts are applied to the two upper bar
charts as a consequence of two homogenize operations. Finally, the two bar charts are
integrated to a grouped bar chart, similarly to the two stacked area charts which are in-
tegrated to a mirrored stacked area chart. The final result can be seen on the right side
of Figure 3.26.

3.2.6 Discussion and Limitations

While our approach was built based on the Visception [56] environment, it is possible
to use within other environments if a few prerequisites are met. Firstly, these environ-
ments must have mechanisms for retrieving information about basic mappings. Since
such mechanisms are fundamental for specifying charts, we believe them to be present
in most environments. Secondly, the environment must provide means for specifying
“combined” charts such as stacked, mirrored, or grouped bar charts. Our approach is
therefore dependent on the expressive range of its underlying environment, and is thus
also most expressive if the environment supports a wide range of expression.

There are several aspects that we did not address, but that could be incorporated. For
example, operating on multiple datasets would be possible, but it would also be more
difficult to establish equivalences between data dimensions. The detection of different
data shown in the same way, and corresponding differentiation of charts would work
exactly the same. However, manual user input would be necessary to establish connec-
tions across different datasets, and thus infer relations on these similarities. While our
current operations have no complicated inputs and require only a single click, we be-
lieve that more customizable operations could lead to a greater range of design options.
Especially in the currently unaddressed case of layout customization, user inputs speci-
fying which views are important, related, or unrelated would greatly help in computing
alternate multi-view visualization layouts.

Finally, our approach does not take the user task into consideration, which would
be a great challenge of its own. We believe that this is a topic worth exploring in
future work, and that general user tasks could guide our evaluation of relationships and
corresponding solutions.

3.3 Artist Designs for Non-Artists

In this work, we contributed an approach for turning rectangle-based grid layouts into
aesthetic, artistically “hand-crafted” content-driven layouts. The main focus of our
work is refinement and aesthetics as seen in Figure 3.27, backed up by a force-directed
layout with forces derived from an original grid layout.

Our previous contribution addressed different ways to refine multi-view visualiza-
tions through operations. However, we did not address the layout aspect of multi-view
visualization design. The most widely used layout in dashboard design is the grid lay-
out, which is based on repeated subdivisions of rectangular spaces. This layout does
not only appear within visualization design environments, but also in code editors such
as Visual Studio Code, and dashboard software such as Tableau [97] and PowerBI.

3

50 Contributions

Content-Driven Layout Pipeline

Image Based
Repulsive Forces

Arranging with
Attractive Forces

Re�nement
& Aesthetics

ReasoningSpeci�cation

Figure 3.27: Here we see a more detailed overview of how our third work on automatic multi-
view visualization layout refinement addresses different aspects of multi-view visualization
design. We emulate an original grid layout topology with our attractive forces, while we
repulse elements with an image-based repulsive force.

In response to ubiquitous use of grid layouts in the context of information visualiza-
tion dashboards, we created an approach that transforms such grid layouts into more
aesthetic content-driven layouts.

Highly aesthetic layouts typically have a “hand-crafted” quality to them. For ex-
ample, Minard’s visualization of Napoleon’s invasion of Russia seen in Figure 3.28
positions elements with regards to their contents, as opposed to their bounding boxes.
Such layouts that position elements by their contents may be more compelling and vi-
sually pleasing, but also require significant manual fine-tuning. Existing approaches to
automate this process are often based on the force-directed layout [33]. Ali et al. [5]
adopted this approach in order to position elements according to their contents. How-
ever, their work does not properly handle concave regions of highly irregular shapes
since it uses convex hulls as proxy geometries for collision detection. To the best of
our knowledge, there were no such layout mechanisms that managed collision avoid-
ance between arbitrary shapes used for multi-view visualization layouts.

Based on this research gap, we proposed a mechanism for turning a grid layout into
a similarly arranged force-directed layout where elements are positioned according to
contents rather than bounding geometries. As an alternative to such bounding geome-
tries, we utilize the Euclidean distance transform [12] of elements to detect and avoid
collisions.

3.3.1 Content-Driven Layout Pipeline

The goal of our contribution was to enable users to refine the layout of an existing
multi-view visualization. We wanted to automatically make the layout more aesthetic
and compact by utilizing previously unused white space. The core idea is to compute a
set of attractive and repulsive forces between elements, then apply these forces with a
force-directed layout simulation. The adjacency relationships of the original grid layout
are modeled by selective application of attractive forces, while the content-to-content
repulsion is modeled by combining the distance transforms of overlapping elements.

We attained these goals with a pipeline composed of four steps: (1) We infer adja-
cency relationships from the underlying topology of the grid layout, and store them
in an adjacency graph. From this graph, we (2) derive a set of central elements,

3

3.3 Artist Designs for Non-Artists 51

Figure 3.28: Here we see a classic visualization, namely Charles-Joseph-Minard’s map of
Napoleon’s Russian campaign from 1812-1813 [71]. Note how the elements of the layout
are positioned not according to bounding rectangles, but with regards to the content. Such
positioning is preferred and achievable when hand-drawing, but highly difficult to achieve
with automatic computer-generated layouts.

Understanding Breathing Patterns
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut

12-15
breaths/min

Average breathing rate of adults
under normal conditions

B

C

A

F

G

H
I
J

D

E

INITIAL GRID CORRESPONDING HIERARCHY ADJACENCY GRAPH INFERRED CENTRAL NODES
& CORRESPONDING FORCES

Attractive forces

A

DC E F G HIB J

Grid Layout & Hierarchy

Infer
Adjacencies

A

B

C

D

E
J

H

G

F

I

J

A

B

C

D

E H

G

F

I

1

2

3 4 5

a b c d

Figure 3.29: Here we see the three steps involved in inferring the attractive forces with our
approach. First, we model the grid layout (a) as a hierarchy (b), from which we derive an adja-
cency graph (c), then from this adjacency graph we infer central node and set up corresponding
forces (d).

such that we can (3) set attractive forces accordingly. Finally, we (4) set up repul-
sive forces wherein image-based content-to-content distances are computed during the
force-directed simulation.

3.3.2 Arranging with Attractive Forces

Attractive forces ensure that elements gravitate towards each other. The core idea be-
hind these forces is to emulate original arrangements so that there is only attraction
between views which are adjacent in the original layout. Furthermore, in order to sta-
bilize the layout by minimizing the total amount of energy in the layout, it is ideal to
not apply any redundant attractive forces. To realize this idea, we derive the attrac-
tive forces from an original grid layout in two steps: First, we infer an adjacency graph
from the underlying tree structure of the original grid layout. Then we derive a set of
central elements to direct the attractive forces towards.

3

52 Contributions

Adjacency Graph Computation

The topology of the original grid layout is closely approximated by our algorithm for
inferring an adjacency graph. In this graph, a node represents an element in the layout,
while a link represents an adjacency relationship. The algorithm aims to capture di-
rect adjacencies between elements, as well as adjacencies between groups of elements.
To illustrate this further, consider Figure 3.29, where the elements B and I are con-
sidered to be adjacent due to their adjacent parent groups labeled 3 and 4. Thus, our
algorithm respects adjacency relationships between groups, as well as immediate geo-
metric neighborhood relationships between elements. The exact algorithm can be seen
in Algorithm 1 in paper C.

Central Nodes Computation

We derive the most central elements in the layout from the already inferred adjacency
graph. Intuitively, some elements are visually perceived as the centers of gravity of
the layout. For example, we can see that element B and I in Figure 3.29 are the most
central. The main idea of this algorithm is to iteratively pick the most connected node in
the adjacency graph as a central node until all non-central nodes are directly connected
to at least one central node. These central elements are inferred according to Algorithm
2 in paper C, which does a traversal of the previously inferred adjacency graph.

The procedure repeats until all nodes are connected to at least one of the inferred
central nodes. First, all nodes are tagged as unvisited. Then, we repeat the following
process until all nodes are either central nodes, or tagged as visited. First, for every
node, we compute how many unvisited nodes can be reached from it, and how many
indirectly unvisited nodes it is connected to. Indirectly unvisited nodes are nodes that
are neighbors of one node, and also neighbors of an unvisited node. We then sort
the nodes according to the number of unvisited neighbors. If several nodes have the
same number of unvisited neighbors, we choose the nodes with the highest number of
indirectly unvisited neighbors.

For example, if we traverse the adjacency graph seen in Figure 3.29c, the first node
to be detected as central is B. Afterwards, we see that J is the only unvisited neighbor
of E, I, and H. But indirectly, I is connected to both E and H, which are both connected
to an unvisited node (I). If we look at E and H, we see that they are only connected
to one additional node – node I, that can reach J. Thus, I has a higher number of indi-
rectly unvisited nodes, and is thus chosen as the second central element. These central
elements are then used to compute a small set of attractive forces which emulate the
original grid layout topology.

3.3.3 Image-Based Repulsive Forces

In order to prevent contents from overlapping, we apply a repulsive force that is com-
puted based on the Euclidean distance transform [12] of the elements. The distance
transform of an element encodes in every pixel, the Euclidean distance to the nearest
content pixel. The distance transform is computed from a binary image representation
of the original content, where 1 is content, and 0 is white space. In order to properly

3

3.3 Artist Designs for Non-Artists 53

repulse elements, we need to be able to compute a content-to-content distance between
them, and infer the directionality of the content-to-content repulsion.

Proximity Computation

The core idea behind computing the proximity is that we combine the distance trans-
forms in order to find it. In a single Euclidean distance transform, each pixel encodes
the Euclidean distance to the nearest content pixels. Furthermore, all distance trans-
forms are 2D grayscale images.

If two elements are overlapping, we correspondingly sum the overlapping regions
of the distance transforms, resulting in an image in which each pixel will encode the
distance between the nearest two content pixels, i.e., the distance between the nearest
pixel to the first element plus the distance to the nearest pixel to the other element. Thus,
the computation of the Euclidean content-to-content distance between two elements is
done as follows: First, we check if the elements have overlapping bounding rectangles.
If they do overlap, we clip the intersecting region between these bounding rectangles
from the distance transforms of both elements, then sum them together, before we
finally pick the smallest value from the summed distance transforms. This smallest
value is then the content-to-content distance approximation.

Directionality Computation

The distance transform proved useful to find the proximity between two elements in a
content-driven fashion. Similarly, it can inform the direction of repulsion. Recall how
each pixel in a distance transform encodes the distance to the nearest content pixel,
consequently each “pixel” in the gradient of the distance transform encodes a 2D vec-
tor pointing away from content. Thus, when two elements are overlapping, and it is
desirable to repulse one element away from another, we use this information to deter-
mine that repulsion. We infer the repulsion as follows: First we consider the gradient
of the element that is pushing another element away. Then, we clip this gradient by the
intersecting region between the bounding rectangles of the elements. All vectors of this
clipped region of the gradient are summed together into a single vector, which is then
normalized, resulting in the normalized directionality of repulsion.

3.3.4 Case Studies

The utility of our approach is demonstrated with two case studies. The main idea
behind these studies is to show an existing grid layout and its corresponding content-
driven layout generated by our approach.
Respiration patterns: In this case study, we show how our approach can be used to
fulfill a design brief without having to manually place elements in a content-driven
fashion. Here, a designer is initially tasked with creating an infographic of respira-
tion patterns, where line charts of 6 breathing patterns are arrayed around an image of
lungs and accompanying text as seen on the upper left of Figure 3.30. Normally, this
would require manual positioning in Adobe Illustrator or a similar manual design tool.
However, with our approach, it is possible to simply specify the topology in a gridded
fashion as seen on the upper right of Figure 3.30, and then use our approach to make the

3

54 Contributions

ARTIST’S CONCEPT CHART COMPONENTS

FINAL LAYOUT

Understanding Breathing Patterns
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut

12-15
breaths/min

Average breathing rate of adults
under normal conditions

Figure 3.30: With our content-driven layout approach, the artist achieves a composition where
the respiratory patterns are arrayed around the lungs.

layout content-driven, resulting in the final layout seen on the bottom of Figure 3.30.
Now, if an element changes slightly, the layout will simply update accordingly, rather
than requiring manual tweaking in a design tool.
Wind Turbines: Here we show how our approach works with several irregular shapes.
The upper left sketch in Figure 3.31 shows the artist’s desired visualization. Creating
this visualization manually is tedious and requires multiple adjustments. Furthermore,
this visualization has several irregular elements: Four wind turbines, a map, as well
as a legend with highly varying label sizes. To realize the artist’s initial concept, the
designer sets up an initial grid layout arrangement that approximates the desired ar-
rangement. The designer then leverages our approach to automatically transform the
grid layout into a content-driven layout shown on the bottom of Figure 3.31.

3.3.5 Discussion and Limitations

Our approach targets scenarios where there are relatively few elements, which is of-
ten the case for common infographics. This technique is therefore in its current state
not well-suited for layouts of large numbers of elements. While we operated solely on
static grid layouts as initial layouts, our approach could be used on different kinds of
initial layouts, since the only change required would be the inferring of the initial adja-
cency graph. An example of such a scenario would be a “snapping” feature that assists
a user in positioning elements close to each other in a manual design environment such
as Adobe Illustrator. While our approach produces promising results, it was shown to
be highly dependent on initial viewport dimensions, and would in some cases get stuck
in a local minima. Such local minima situations could be resolved by interaction, where

33

3.3 Artist Designs for Non-Artists 55

ARTIST’S CONCEPT CHART COMPONENTS

FINAL LAYOUT

Gridded layout
does not make
optimal use of
white space
created by wind
turbine blades
and requires a
much taller
canvas.

Our approach
makes more
efficient use of
white space and
can compress to
a more normal
portrait-style
aspect ratio,
which is a better
match original
artist concept.

Figure 3.31: Here, our approach makes the plots and text elements array around the largest
central wind turbine, thus optimizing the use of white space and matching the artist’s intended
layout more closely.

the user can manually drag elements to more ideal positions. Furthermore, we did not
explore our approach in the context of dynamic content, such as with dynamic filter-
ing and cross-linking on Vega-Lite specifications. However, we believe such dynamic
behavior would be well-suited for the incremental nature of force-directed simulations,
where the layout would simply adapt to individual element changes in real-time.

For most shapes, we found that using a smaller distance transform resolution gave
an increase in performance with little impact on the final layout. However, for elements
with finer details, this downscaling resulted in cases where they were not fully taken
into account. We believe this problem could be addressed by making it possible to
interactively specify the distance transform resolution, or automatically detecting an
ideal resolution to capture finer details on a per-element basis. Our use of the distance
transform also opens up for using other image processing techniques before the distance
transform is computed. For example, it would be possible to draw bounding geometries
to enforce a hard boundary around an object.

3

«A conclusion is the place where you got tired of thinking.»
Martin H. Fischer

44

Chapter 4

Conclusion and Future Work

The goal of this thesis was to explore and improve different approaches for guiding
the design of multi-view visualizations. Ultimately, we wanted to introduce approaches
that would make typical “expert-only” expressiveness available to non-experts. We
presented solutions addressing multi-view visualization specification, reasoning, re-
finement, and aesthetics. The applicability and usefulness of our approaches is demon-
strated with several examples and case studies.

We proposed a novel data structure for simplifying the specification of multi-view
visualizations by using nesting as a first-class operator. In conjunction with flexible data
mappings, this structure makes it possible to rapidly toggle between different nested
visual representations. Furthermore, our flexible data mappings let the user adapt vi-
sualizations to the data format, rather than having to adapt the data format to fit the
visualization template through data wrangling efforts. We then demonstrated the ex-
pressive power of these contributions with our visual builder, where non-expert users
can specify high-fidelity nested visualizations as demonstrated by our generated exam-
ples.

Our focus then shifted to guided multi-view visualization design with an emphasis
on automatic detection and resolution of design anti-patterns. We proposed semantic
snapping, an approach that utilizes algebraic means for reasoning about a multi-view
visualization, and then leveraged this to selectively resolve detected problems with
corresponding operations. Our approach was made available to users with our proposed
workflow that lets users execute understandable operations to address potential design
problems. This workflow incrementally helps the user refine an existing design into
a more consistent, and potentially more compact design as demonstrated by our case
studies.

In our final approach, we addressed the issue of multi-view visualization layout by
enabling users to transform a gridded layout into a “hand-crafted” layout where ele-
ments are positioned according to their contents. This was made possible by utilizing
a force-directed layout where attractive forces model the layout topology, while re-
pulsive forces model the contents by using distance transforms to detect and prevent
overlapping. The effectiveness and utility of our approach is demonstrated by our ex-
amples, showing an existing grid layout and the corresponding layout generated by our
approach.

Our presented research opens up several directions for future work. As the amount
of data, and its complexity increases, so does the need for tools to make sense of this

4

58 Conclusion and Future Work

data. Without such tools, users will not be able to properly communicate about, or
comprehend the data properly. Thus, we find it likely that tools for aiding the visual-
ization design process will be needed not only by non-experts, but also by experts. It
is therefore especially important to keep developing and consolidating approaches for
simplifying the process of visualization design.

In the context of nested visualization design, one major challenge is the combi-
nation of nested visualizations with existing interaction, embellishment, and design
techniques. For example, the drawing of links between nested elements at different hi-
erarchical levels proved highly difficult. We believe there are two approaches to this
challenge: (1) further breaking down and reformulating existing techniques to make
them fit into the framework of nested visualization, or (2) making nested visualizations
adapt to existing techniques. Both challenges are difficult, as nested visualizations in-
volve several layers and elements, while existing techniques are often formulated for
non-nested visualizations.

Furthermore, we believe that semantic guidance approaches such as our approach
of semantic snapping will become more crucial within design tools as data and ex-
isting techniques become more diverse and complex. One major challenge here is to
consolidate and formulate existing guidelines not only so that they can be interpreted
programmatically, but also be applied to a wide range of different visualizations and
dataset types. Existing research prototypes often only demonstrate the concept, but are
yet difficult to apply “in practice”, or within existing tools. Unfortunately, most ap-
proaches assume a specific format of data which is not necessarily always the format
used “in the wild”. Unified abstractions that encapsulate different dataset types and for-
mats may be helpful in unifying approaches currently targeted towards specific kinds
of data.

Furthermore, as it is becoming increasingly important to be able to communicate
simple messages quickly, we expect that aesthetic, attention-grabbing artistic-looking
layouts, especially for multi-view visualizations are beneficial for capturing the atten-
tion of the audience. Our final paper attempted to take one step in this direction by
transforming an existing layout into a more artistic layout. However, we suspect that
there is a need for more work on such layouts so that they can automatically adapt to
different screen sizes, devices, and purposes. At the moment, information visualiza-
tion dashboards are typically viewed on computer screens, but are also being viewed
more and more on mobile devices. On such mobile devices, more compact and creative
layouts are needed, and we believe this transition is already happening.

While all our approaches are separate contributions, one of the most promising ar-
eas of work in this field is to create higher-level grammars and systems that consolidate
and unify existing approaches, making them more available to end-users. Experimental
techniques are often accessible only to visualization experts. Thus, with all the recent
development and growth in visualization grammars, layouts, and authoring tools, it is a
good time to find commonalities between these techniques and make them expressible
through a higher-order common language, that is also ideally accessible and under-
standable to non-experts.

During the development of these works, our main goal was to develop underlying
mechanisms and integrate them into corresponding user interfaces. However, we did
not take the step towards evaluating the user interfaces, as the development of the mech-
anism and interface proved to require both time and effort. An important future step for

4

59

all these mechanisms is of course to evaluate them through empirical user studies and
make according adjustments so that their power can be exposed to as broad an audience
as possible.

Our works are also subject to another general problem with research prototypes,
where the focus is on developing mechanisms as a proof-of-concept. However, the
time and effort it would take to make our works bug-free enough to expose to a general
audience was greater than the available time and effort available through the course
of this PhD. However, we hope that the underlying concepts and mechanisms devel-
oped through this work can inspire future development within more robust, bug-free,
industrial-standard systems.

In the combination of our work, we have explored several aspects of multi-view
visualization design. Our work started with specification of visualizations which is
largely manual, and then progressed towards increasingly automated methods. First, we
provided means for reasoning about visualizations, accompanied by interactive and au-
tomatic methods derived from our means for visualization reasoning. Our approaches
would likely be best when used in conjunction with each other and existing techniques,
which we hope will be the case in the future. Thus, we aim to encourage visualization
researchers to find means for consolidating existing design approaches by innovating
higher-level solutions.

4

«Dude, suckin’ at something is the first step to being sorta good at something.»
Jake the Dog

4Part II

Included papers

4

AA

Paper A

Visception: An Interactive Visual Framework for
Nested Visualization Design

Yngve Sekse Kristiansen and Stefan Bruckner

University of Bergen, Norway

Abstract

Nesting is the embedding of charts into the marks of another chart. Related
to principles such as Tufte’s rule of utilizing micro/macro readings, nested
visualizations have been employed to increase information density, provid-
ing compact representations of multi-dimensional and multi-typed data en-
tities. Visual authoring tools are becoming increasingly prevalent, as they
make visualization technology accessible to non-expert users such as data
journalists, but existing frameworks provide no or only very limited func-
tionality related to the creation of nested visualizations. In this paper, we
present an interactive visual approach for the flexible generation of nested
multilayer visualizations. Based on a hierarchical representation of nesting
relationships coupled with a highly customizable mechanism for specify-
ing data mappings, we contribute a flexible framework that enables defining
and editing data-driven multi-level visualizations. As a demonstration of
the viability of our framework, we contribute a visual builder for exploring,
customizing and switching between different designs, along with example
visualizations to demonstrate the range of expression. The resulting system
allows for the generation of complex nested charts with a high degree of
flexibility and fluidity using a drag and drop interface.

This article was published in Computers & Graphics vol. 92, pages 13–27, 2020. (doi: https://doi.org/
10.1016/j.cag.2020.08.007)

https://doi.org/10.1016/j.cag.2020.08.007
https://doi.org/10.1016/j.cag.2020.08.007

A 64 Visception

A.1 Introduction

Nesting or embedding, i.e., the integration of additional visualizations into the marks
of a chart, enables the presentation of information-dense graphical data depictions.
By augmenting an outer visualization with additional details presented as information
layers as part of its marks, rich depictions of complex data can be constructed from a
few basic building blocks.

Nested visualizations are frequently applied in order to convey multi-faceted data
and facilitate storytelling. In particular in fields such as data journalism, users would
greatly benefit from being able to create such visualizations without programming.

In recent years, a new generation of visual authoring systems such as Data Illustra-
tor [61] and Charticulator [82] have been developed to enable the creation of custom
charts via intuitive visual interfaces accessible to non-experts. In particular, they aim to
support the flexibility and customization options of design tools such as Adobe Illustra-
tor, while still providing a data-driven visualization environment. While these systems
feature advanced mechanisms for designing bespoke charts, they provide no or only
very limited support for nesting.

In this paper, we present Visception, a visualization framework built from the
ground up based on nesting as a first-class operation. For this purpose, we introduce
the VC-tree as our central data structure. We detail how this approach offers flexible
data mappings for transforming tabular input data into data objects, enabling the ex-
pression of a wide range of different groupings when creating a nested visualization.
Individual charts are made composable with other charts through our framework’s im-
plicit handling of nesting and deformation. By providing a set of simple operations to
manipulate a VC-tree, we are able to realize a large number of different embedding and
layering relationships. Furthermore, we show that using a more inclusive definition of
what constitutes a data-mappable channel provides additional design flexibility in the
context of nesting. The full functionality of our framework is exposed in the form of a
visual builder, and we demonstrate that our approach allows for the easy generation of
a variety of complex nested visualizations.

A.2 Related Work

A.2.1 Formal Graphics Specifications

Foundational works like Bertin’s Semiology of Graphics [10] and Wilkinson’s Gram-
mar of Graphics [108] provide constructs for concisely specifying and reasoning about
graphics. Bertin describes marks as basic graphical units, and visual variables as mod-
ifications (position, shape, value, color, orientation, texture, and so on) that can be
applied to marks. Munzner [73] consolidated and extended similar approaches for dis-
cussing visualizations, and also introduced the term channel as a way to control the
appearance of marks. Visception features a more inclusive kind of channel, denoted as
a VC-channel. Layout parameters as well as global chart properties such as for example
the title or background of a chart, are exposed as VC-channels.

Early information visualization techniques utilized low level libraries. While such
low level libraries enable the expression of graphics, they are not necessarily suitable

AA.2 Related Work 65

for visual thinking. Thus, multiple visualization toolkits that raise the level of abstrac-
tion have been developed. Examples of such libraries include Prefuse [39], Protovis
[13] and D3 [14].

At an even higher level of abstraction, visualization grammars such as Vega [112]
enable clear expression of a wide range of visualizations declaratively. In Vega, each
chart is a unit which takes in data and associated transformations, mark type, and en-
codings. Each encoding is a specification for how a channel is mapped. Built on Vega,
Vega-Lite [87] is both a grammar of interaction and graphics. A prominent feature of
the Vega-Lite grammar is its view composition algebra with four operations: Layer
for placing one chart on top of another, Concatenation for placing charts side by side,
Facet for creating one view per distinct value of a field, and Repeat for creating several
views with the same input data. Visception uses nesting and data groupings indepen-
dent of chart inputs to provide a more flexible and recursive nesting behavior. In terms
of data, Visception’s nesting operation corresponds to Vega’s facet operation. Visually,
Vega provides rows and columns as host spaces for child charts, while Visception pro-
vides a set of customizable charts as host spaces. These charts are more flexible and
controllable than rectangular host spaces generated via the facet operation, and may be
mapped to data. Visception’s VC-channels function similarly to Vega’s encodings, al-
though each chart in Visception will have a larger set of VC-channels to modify the
layout.

Tree visualization grammars are closely related to nesting. Li et al. [58] intro-
duced a declarative grammar of tree visualizations, enabling users to rapidly specify
both explicit and implicit depictions. Their visual builder allows the user to combine
different tree layout algorithms, and to adjust finer aspects such as margin and padding
between nodes. Visception has a similar approach in that it combines layouts. However,
Visception is focused on enabling the creation of nested visualizations from tabular
data, while GoTree is focused on creating tree visualizations from predefined hierar-
chies. Schulz et al. [90] propose a set of functional building blocks denoted as layout
operators that enable building explicit node-link layouts as well as implicit space-filling
layouts. They specify a highly flexible layout pipeline for rendering such trees, and ex-
pose operators that allow the user to modify the layout in a variety of ways. Similarly,
Visception uses a layout pipeline in its underlying implementation, and exposes param-
eters that modify the layout as VC-channels. Visception only does top-down explicit
layouts, and does not work bottom-up as Schulz’ generative approach.

Other more specialized grammars focus on particular categories of visualizations.
ATOM [76] is grammar for unit visualizations. With this grammar the user can sub-
divide a space at multiple levels and fill in units — one for each datum. Visception
exposes a similar design space by providing a unit chart type. Wickham and Hof-
mann’s Product Plots [107] is a framework for transforming and combining area-based
visualizations. They define three 1D primitives: bars, spines and tiles. With these
three primitives, they show that it is possible to express a wide range of both simple
and complex visual representations of data. While both Product Plots and Visception
use nesting, Visception leverages the chart type itself to provide host spaces for child
charts, while Product Plots subdivide rectangles with a small set of rectangle-based 1D
primitives.

Schulz and Hadlak [92] presented a way of representing visualizations by blending
together existing visualizations defined as presets. In the process of describing how

A 66 Visception

to interpolate between visualizations, they expose connections between different chart
types, such as the polar area chart and the bar chart. Rather than presets, Visception
offers a set of charts the user may choose and combine. Thus, Visception covers a
discretized subset of the design space covered by preset-based visualization.

We are inspired by these approaches of combining and deforming 2D geometries,
and use such concepts to handle nesting and deformation behavior for all chart types
within our framework. Vuillemot and Boy [105] use nested and composite visualiza-
tions to facilitate the exploration of designs, regardless of data. They define a visual
grammar with partitioning patterns and data transform operations. With our frame-
work, we enable the specification of charts without requiring explicit specification of
nesting behavior, making it easy to introduce new building blocks to the language.

A.2.2 Data Exploration and Visual Authoring

Data exploration tools focus primarily on what the user can learn about the data, rather
than design and aesthetics. IVEE [2], Visage [83], and Tioga2 [3] were some of the first
systems to enable visual building of queries, and visualizing the results. Polaris [97]
by Stolte et al. (later commercialized as Tableau) enables rapid exploration of large
multidimensional datasets, leveraging a table algebra to display a wide range of charts.

Visual authoring tools are more focused on design than data exploration, yet they
serve a similar purpose and can potentially be as powerful as data exploration systems.
Charticulator [82] enables the user to define a chart by articulating compound marks
or glyphs, as well as links between these. Lyra [85] enables the interactive design of a
wide range of visualizations using drag and drop operations. Lyra also provides visual
data pipelines that allow for the expression of advanced layouts and data transforma-
tions. iVisDesigner [81] aims to cover a wide range of the visualization design space by
leveraging modular visualization design. Data Illustrator [61] augments vector design
tools with new concepts and operators, enabling users to bind parts of a vector-based
illustration to data. Data Driven Guides [52] has a similar approach to Data Illustrator,
allowing users to create data-driven shapes (also known as guides) that can be deco-
rated by custom vector graphics. iVolver [74] provides users with the means to extract
and reconstruct visualizations from both data sets and existing visualizations (including
images and webpages).

While our work shares many of the general goals with the approaches mentioned
above, Visception focuses on nested, aesthetic visualizations. We provide an editor
and a framework to enable the design of highly customized information rich visualiza-
tions by leveraging nesting. Our definition of charts with VC-channels are made to be
compatible and consistent for both nested and non-nested charts.

A.2.3 Nested Visualization and Related Techniques

Hierarchical and small-multiple layouts are closely related to nesting. Schulz et al.
[91] surveyed the design space of hierarchy visualization, providing an overview of a
large number of different techniques (both 2D and 3D) used to visualize hierarchies, as
well as exposing unexplored parts of the design space. LeBlanc et al. [57] describe the
technique of dimensional stacking, allowing the user to map high-dimensional data to
a relatively small 2D space. Similar expressiveness can be achieved in Visception by

AA.2 Related Work 67

nesting rows and columns. Wang et al. [106] introduced the circle packing layout, nest-
ing circles within circles with arbitrary depths. This layout may also be expressed by
nesting circles with a force-directed layout [33] within one another, which is achiev-
able in Visception by nesting plot charts. Treemap layouts are often used to visualize
hierarchies. Baudel et al. [8] present a generic algorithm that expresses most of the dif-
ferent existing treemap layouts using only a few basic operations. Visception follows
a similar line of thought: to expose parametrized generic charts that may express other
specific charts.

Using nested visualizations it is possible to express complex relationships by only
using a few simple building blocks. Parker et al. [77], as early as 1998, designed Nest-
edVision3D, allowing for the exploration of nested graphs to explore the structure of
computer programs. ZAME [28] (Zoomable Adjacency Matrix Explorer) nests glyphs
inside each cell of an adjacency matrix. Combined with zooming, panning, and ag-
gregation represented as glyphs, ZAME allows for the exploration of large datasets.
Javed and Elmqvist [49] detail four visual composition operators: juxtaposition, su-
perimposition, overloading and nesting. Visception provides a flexible layering oper-
ation that, combined with movable and resizable bounds, achieves a similar level of
expressiveness as using these four operators. Juxtaposition and superimposition are
expressible by simply editing the bounds of a chart. HEDA (Heterogenous Data At-
tributes) [63] is a generic interactive visualization component that aims to enable users
to explore heterogenous data as a reorderable matrix. Visception maintains reorderabil-
ity, but as a side notion with an order VC-channel exposed for reorderable charts and
focuses on providing a visual language for building nested visualizations. Slingsby et
al. [95] explored the use of different layouts with editable hierarchies to incrementally
answer research questions. Their approach could be described as explorative nesting
of data. They define the language HiVE (Hierarchical Visualization Expression Lan-
guage) which includes operations for editing, deleting, inserting and swapping different
levels of a hierarchy. Visception can express similar hierarchies as HiVE, with more
focus on design flexibility and support for a wider range of chart types. NodeTrix
[40] enables the visualization of large networks using juxtaposition and overloading by
linking adjacency matrices together. It combines the node-link diagram and the adja-
cency matrix into one visualization, enabling the designer to show more data and data
relations using less visual space. Similarly, Domino [37] uses overloading and juxta-
position to compare and manipulate subsets across multiple datasets.

Overall, multiple specific cases of using nesting have been explored by related
works. In Visception, we go beyond existing solutions by enabling the specification
of nestable charts without needing to specify nesting behavior. We also enable the
user to specify a wide range of different data groupings without having to modify the
dataset. Finally, we include layout parameters and global properties as VC-channels,
making many specific chart types expressible as configurations of a more general chart
type. Visception’s use of charts as building blocks follows the same line of thought as
Pattison et al. [78] who proposed a “generalized layout”, similar to treemaps but with
more available intra-container layouts.

A 68 Visception

Term Explanation

Chart A chart has a type and associated tabular input data that is repre-
sented by output marks.

Chart type A type of chart within the Visception framework, consists of its
own layout that is controlled by some of its VC-channels. The
layout controls the shape and position of the chart’s output marks.

Output marks Graphical marks of a single chart.

VC-channel Controls a particular aspect of the appearance or layout of a chart.

VC-channel mapping The assignment of data (for example a dimension) to a VC-channel
(for example fill color).

Layout space Normalized space in which a layout is initially computed.

Parent space Space(s) in which a chart’s output marks are embedded according
to the computed layout. If the node is a root node, the parent space
is simply the root viewport. Otherwise, a chart-dependent region
within the output marks of the parent chart.

Data object Represents a selection from a tabular dataset. May be one of the
following: 1) A single row, 2) A list of rows, 3) A list of values.

Chart input data A set of data objects inherited from the parent VC-node. If the
node is the root VC-node, the input data is the list of rows of the
entire dataset.

Chart mapping Transforms every input data object into a new set of data objects.

Chart output data A set of data objects, used for rendering the chart, and possibly as
input data to child charts.

Table A.1: Terminology used throughout the paper.

A.3 The Visception Framework

In this section we detail our framework for nested visualization design. As the use of
certain terms varies in the literature, we present the terminology used here in Table
A.1. First, in Section A.3.1, we discuss how individual charts are represented and ma-
nipulated in Visception. We then introduce the VC-tree, our central data structure that
enables the specification of and interaction with a nested visualization in Section A.3.2.

A.3.1 Charts and VC-channels

Charts form the basic building blocks of Visception. A chart transforms tabular in-
put data into output data objects, which are then used to generate graphical elements
referred to as output marks.

VC-channels represent the parameters that control the layout and style of a chart.
Layout VC-channels affect the shape or position of a chart’s output marks directly and
are hence typically specific to a particular chart, while other VC-channels affect the
styling of the stroke, fill, drop shadows, etc. and are generally shared among multiple
charts. As a convenience, bundles of common channels are represented as three general

AA.3 The Visception Framework 69

(a) Bubbles (b) Beeswarm (c) Scatter (d) Columns

Figure A.1: Four visualizations with the same chart mapping, and different channel configura-
tions. The first three charts (a-c) are different configurations of a plot, while (d) is the columns
chart equivalent of (c).

chart prototypes, which are then used to compose more specific charts: A base chart
with all the common VC-channels for high-level transformations applied uniformly to
the entire chart, a stroked chart with all VC-channels relating to the stroke, and a filled
chart with all VC-channels relating to the fill of a chart.

Layout VC-channels allow the user to control different aspects related to the layout
of a chart. For instance, a bubble chart, a beeswarm plot, and a scatter plot, instead
of being available as separate chart types, can be expressed as configurations of one
flexible chart as illustrated in Figure A.1a–c. In A.1a the collision radius, which is a
scaling factor of the repulsive force between the nodes of a force layout, is set to 1.0,
while in A.1c it is set to 0. A.1c also has both the x and y VC-channels mapped to data.
In A.1b we see that the force x is higher than force y, causing the circles to accumulate
along the vertical axis. All VC-channels available in Visception can be seen in A.8,
Figures A.21 and A.22.

Some attributes of a chart control global visual elements instead of the appearance
of individual marks. They are usually referred to as properties in related works [82]
and typically cannot be mapped to data since such an operation has limited utility.
However, when nesting is introduced, the data of the parent chart can serve as input data
for these properties, making them meaningfully mappable to data. For these reasons,
such properties are also exposed as VC-channels, enabling an increased level of design
flexibility without introducing additional complexity. For instance, we can adjust the
stroke width of a nested chart based on the parent datum or use a categorical dimension
to enable/disable effects such as drop shadows for a subset of the data.

Similar to Vega-Lite [87], we populate all VC-channels with editable default values.
For example, if a columns chart is created, the bar height VC-channel is by default
mapped to the (editable) value of 1, resulting in N bars with the same height. These
defaults allow for rendering the chart at its intermediary stages, without requiring a
complete specification of data mappings.

Furthermore, in order to be able to switch between chart types while preserving
existing data mappings as much as possible, we maintain a set of semantic VC-channel
equivalences between chart types as shown in Table A.2. For example, if we change
a plot to a columns chart (see Figure A.1 c–d), there are two equivalence groups: one
containing the plot y and bar height VC-channels, and another containing plot x and
bar order VC-channels. Hence, these existing data mappings can be transferred to the
new chart.

A 70 Visception

Group Explanation VC-channels

Position
Major

Most significant VC-channel controlling
the position of the marks.

plot x, line x, bar order, circular bar order
(for the charts: polar area, sectors, tubes)

Size Major Most significant VC-channel controlling
the size of the marks.

tile size, unit size, stream size, plot size,
bar height

Position
Minor

Secondary VC-channel controlling the po-
sition of the marks.

plot y, line y

Size Minor Secondary VC-channel controlling the
size of the marks.

bar width (columns), bar height (rows),
tube height (tubes chart)

Table A.2: Examples of equivalence groups within the implementation of Visception. We
followed Munzner’s [73] ranking of channel types by effectiveness to determine the most
significant channels.

A.3.2 Visception Tree

Visception aims to be a visual and conceptual framework for nested charts by enabling
operations for building and editing a hierarchy of charts, as well as implicitly handling
common nesting behaviors for multiple charts. Other works such as HiVE [95] and
ATOM [76] enable setting up hierarchies of charts and data. Drawing inspiration from
these previous approaches, we propose the Visception Tree (VC-tree) data structure.
The VC-tree provides fine-grained control over data mappings at different hierarchical
levels, and implicit handling of deformation and nesting behavior. In this section we
will go into detail on how the VC-tree encapsulates a tree of charts, data mappings, and
spaces.

Structure and properties: The VC-tree consists of VC-nodes which have two ex-
plicit properties: A chart type and a data mapping. The data mapping represents a
chosen grouping of the chart’s input data, while the chart type defines the layout and
thus the transformation of the output data into output marks that make up the visual
representation of the data. When a VC-node is the child of another VC-node, this cor-
responds to nesting one chart within another. The contents of the nested chart is then
displayed within the output marks of the parent chart [49]. For example, nesting a plot
within a columns chart with N bars will result in N plots, one within each bar. The
left-to-right order of nodes corresponds to the Z-index, with the leftmost nodes ren-
dered on top as shown in Figure A.2. VC-nodes can be added, moved, and deleted as
also illustrated in Figure A.2.

Data mappings: Each VC-node has both input and output data, consisting of a
number of data objects. The output data of a node is implicitly defined by its data
mapping and input data. Depending on the type of data mapping, a data object may
represent a row in the dataset, a list of rows, or a list of values.

Each node’s input data corresponds to the output data of its parent (at the root of
the tree, the input data is the list of all rows in the tabular dataset). The data mapping
of a node turns its input data into output data as shown in Figure A.3. For each chart
corresponding to a VC-node, the output data is used for generating geometric shapes.
A VC-node is considered nestable, i.e., it can have children, if it has one areal output
mark per output data object. In order to enable nesting without requiring a very specific

AA.3 The Visception Framework 71

Tree Chart Operation

Before After
Tree Chart

Nest

Group

Layer (front)

Layer (back)

Delete

Figure A.2: This figure depicts operations that can be performed on a VC-tree, along with
example charts. Note that the move operation is not shown here, since it corresponds to a
delete operation followed by nest, group or layer operation that re-inserts the node into the
hierarchy. Red represents a deleted chart, while green represents an added node

dataset format, we define four types of data mappings, dimension, all, monolith, and
identity, which are summarized in Table A.3.

For dimension and all, the input data objects must always represent a list of rows to
be applicable. The dimension mapping corresponds to grouping by a given dimension
D. Thus, we partition each data object by distinct values of D. For example, if the input
data is a single data object representing a list of all rows, and the mapping is a dimension
D, the output data will be a set of data objects, each object representing a distinct value
of D with a list of matching rows. If the data mapping is set to all, each input data
object (always representing a list of rows) is “unpacked” into a list of data objects,
each containing one row. For instance, if an input data object is a list of three rows,
an all mapping would output three data objects, each containing one row. The identity
mapping generates a list of data objects identical to those of its parent. Creating such
“dummy” data objects allows for overloading charts with extra information by nesting
more charts within existing marks as shown in Figure A.9. The monolith mapping
creates one data object for every specified numeric dimension. For the list of rows

A 72 Visception

Input data

Mapping

Output data:

Data object

Figure A.3: A data mapping trans-
forms every input data object into
a set of new data objects. By ap-
plying this relationship recursively,
each node can compute its own out-
put data.

Figure A.4: On the left, we see a non-sparse
mapping, which includes empty data. On the
right, we have a sparse mapping showing only
non-empty data objects. Observe how the non-
sparse mapping horizontally arranges the in-
nermost bars uniformly.

within every input data object, it generates one data object per dimension, containing
the list of values of that dimension. Intuitively, the monolith mapping can be seen as
“one mark per data dimension”. An example of this mapping can be seen in Figure
A.8.

In the case of nesting, the all and dimension mappings can be specified as sparse or
non-sparse. A sparse mapping is the default, and will only create data objects that exist
when nesting. For example, suppose a dataset is grouped by gender: male and female.
Furthermore, the hair colors of both males and females include red, brown, grey, black
and white, but only the female set has brown and grey hair. Then, if we apply a sparse
mapping, the female set will include a mark for red and brown, but the male set will
not. If the mapping is non-sparse, empty data objects are generated in all sets of data.
This construct is useful when, for instance, creating bar charts on grids, and makes the
nesting uniform as shown in Figure A.4. The examples shown in Figures A.12 and
A.13 show the implications of a sparse vs. a non-sparse mapping.

Space transformations: Since the layout of an individual chart only outputs ge-
ometric shapes into a normalized space denoted as the layout space, the framework
must handle the rest of the nesting behavior. Existing works have already addressed
the problem of deforming/transforming charts. For example, Schulz and Hadlak [92],
Wickham and Hofmann [107], and Charticulator [82] transform charts from Cartesian
to non-Cartesian spaces. ATOM [76], Vega [87], Vuillemot and Boy [105] compose dif-
ferent layouts in Cartesian spaces via nesting. Using similar methods, the layout com-
ponent of the Visception framework transforms the shapes from a normalized space to
fit within the parent space.With nested charts, we need to consider two different spaces
in order to render the chart. Given a parent-child pair of VC-nodes, each mark of the

AA.4 Implementation and Visual Builder 73

Mapping Description Cardinality

Dimension (-,+) Groups every input data object by a given data dimension
D, with, creates one data object per existing (if not sparse-
mapped) value of the domain of D. Always nestable.

between 0 and num-
ber of values in do-
main of D

All (-,+) Ungroups input data object, creating one data object per
row in the input data object. If sparse-mapped, this will
create one data object per row in the root dataset. Nestable
only if the child is identity-mapped

between 0 and num-
ber of rows in dataset

Monolith (-) Creates D data objects per input data object, given D di-
mensions. Not nestable.

D

Identity (-) Creates one identical data object per input data object. Al-
ways nestable.

1

(-) Sparse Mapping excludes empty rows and data objects when nesting.

(+) Non-sparse Mapping includes empty rows and data objects when nesting.

Table A.3: A summary of all possible data mappings in Visception. Not all mappings are
nestable, some are only nestable if the child has a certain mapping. The cardinality of each
mapping describes the size of each set of data items per parent data object. If a non-identity,
non-monolith mapping results in only sets with a cardinality of 1, this is equivalent to an
identity mapping.

parent node holds an inner space. We refer to this space as the parent space. Each chart
is first defined in layout space, a normalized space in which the shapes of each chart
are calculated. Our framework implicitly handles nesting and deformation behavior by
fitting layout shapes into a parent space. Figure A.5 shows how a columns chart can be
fit into both a Cartesian and a circular parent space.

The transformation from layout space to parent space depends on the type of the
parent space, the layout shapes and the specific defined behavior for the shapes of the
chart. For example, nesting a columns chart within a polar area chart corresponds to
transforming rectangles to fit within arcs. If the parent space is an arc, charts nested
within each arc will be either deformed or fit within the arcs. For columns charts it
makes sense to deform the rectangles as shown in Figure A.5b, whereas for scatter
plots or force-directed layouts it makes sense to deform the position, but not the shape.
These deformations can be reduced to a matter of either fitting (scaling and translating
the whole shape to fit within the parent shape), or deforming 2D shapes by transforming
every coordinate into the coordinate system of the parent. For example, to transform a
rectangle to an arc, we simply transform the Cartesian (x,y) coordinates of each corner
into the polar coordinates of the parent arc.

A.4 Implementation and Visual Builder

A.4.1 Implementation

Visception was implemented as a web application using VueJS for the front-end UI
components, and D3 [14] for rendering the SVG. A prototype of the framework is

A 74 Visception

(a) Since the immediate parent space of the columns
chart is an arc, the bars are deformed into arcs that fit
within the parent arcs.

(b) As the parent’s space is Cartesian, the bars are
fit into the Cartesian coordinate system of the parent
marks.

Figure A.5: Two examples of nesting with different types of parent spaces. If the parent space
is deformed, each bar of a columns chart is also deformed as seen on the left.

available at https://vis.uib.no/visception/.
D3’s data selections allow for creating SVG elements on a per-datum basis. This

also enables creating a set of child elements for each parent element. Our implemen-
tation heavily relies on this mechanism for specifying a hierarchy of SVG groups and
paths corresponding to the hierarchy of data.

The VC-tree and its VC-nodes act as a skeleton for the rest of the logic. Each VC-
node has a channel manager, layout manager, guides manager, chart type, and data
input. With this information, each node can compute its own layout and style. The VC-
tree was realized as a simple tree data structure, with functions for moving, adding, and
removing VC-nodes. Each VC-tree is tied to an SVG element, and each VC-node to a
D3 selection representing the chart’s output marks.

Data queries and local selections: Whenever the data mapping or chart type
changes, a data query is made, and the selection of the node is updated accordingly.
The data mapping and chart type of the VC-node is used to query the dataset, and thus
infer the cardinality of the selection.

Layout: Whenever a VC-channel affecting the layout changes, the layout step,
which itself is implemented in the form of a pipeline, is executed. The layout com-
putes the position and shape of each mark of a node’s selection. Since most charts
have commonalities, we implemented a general layout pipeline where we can easily
replace/insert steps for customization, but also reuse many steps across multiple chart
types.

Guides: After the style or layout has changed, the guides of the chart are rendered,
independent of the layout pipeline. Floating guides, such as color legends (see Figure
A.8) are rendered to a group at the root of the SVG. Fixed guides such as axes (see
Figure A.20) are rendered in a selection local to each node. While guides are not
the main focus of this paper, they use a similar mechanism to the layout pipeline for
rendering, and are deformable as seen in Figure A.20. The geometric components of
the axis are transformed along with the output marks of the corresponding chart. Both
axes and floating guides can be styled using VC-channels.

https://vis.uib.no/visception/

AA.4 Implementation and Visual Builder 75

Component Information displayed Functions

Canvas Result visualization. Receive drops, mapping data to chart or
VC-channels.

Data Data mappings, dimensions and aggre-
gates.

Initialize drags.

Outline Hierarchy of charts (a VC-tree) & data
and chart type of each node, selected
node.

Receive drops (map data to chart), re-
arrange hierarchy (group, nest, layer),
changing chart type of node, selecting a
node.

Channels VC-channels of selected chart. Receive drops (map data to VC-channel),
edit individual VC-channels.

Guides Guides (legends and axes) of selected
chart.

Edit guide by editing channels.

Table A.4: A summary of information each user interface component shows, and which func-
tions it addresses. Together, these views enable the creation of nested charts, editing individual
charts and accompanying VC-channels and guides.

A.4.2 Visual Builder

Design and components: Our visual builder uses drag and drop operations to expose a
majority of the framework’s functionality. An overview of the user interface is shown in
Figure A.6 and the main functions provided by each of the components are summarized
in Table A.4.

The data view enables the user to drag data mappings, dimensions and aggregates.
Dragging an item from the data view expresses an intent to map that item to a chart or
a VC-channel and potential drop targets are immediately highlighted. The data view
provides all possible data mappings and individual data dimensions. A dimension can
be clicked and expanded into a set of draggable aggregates (see Figure A.6). We cur-
rently provide the following aggregation functions: sum, quartile, quantile, median,
min, max, avg, distinct, and count. Furthermore, by dragging the respective icons, the
user can indicate whether the dragged mapping should be sparse () or non-sparse
(). Dragging the tile corresponds to dragging a monolith mapping of the dimen-
sion. A drag and drop operation of a data mapping or dimension aggregate can express
a wide range of operations as shown in Table A.5.

All drag operations originating from the data view have three possible drop destina-
tions: the outline view, channels view, or canvas view. Thus, the data view is placed in
the center to all these views. The canvas view shows the rendered charts, and accepts
both chart and channel mappings. When the Visception builder is initially opened, only
the canvas and data views are visible. When a data mapping is dropped onto the can-
vas, the outline view and channels view appear. The outline view provides a high-level
overview by showing the hierarchy of charts, and enables the expression of operations
such as nesting, grouping, layering (see Table A.5), as well as changing chart types.
When a node in the outline view is clicked, it is selected. When selected, the chan-
nels view displays all available VC-channels for a chart, and enables the user to edit
and map data to individual VC-channels. For editing guides, we provide the guides

A 76 Visception

Figure A.6: A screenshot of all views exposed within Visception. Note how the Guides view
is within a tab in this example. The guides view lets the user select a guide, and shows a list
of VC-channels (similar to the Channels View displayed on right) that the user can edit the
guide’s style through.

Target Area Operation Result

Channel Center Map (VC-channel) Map D to VC-channel

Outline Node Center Map (chart) Map chart to D
Left Layer (front) C′ layered on top of C
Right Layer (back) C′ layered beneath C
Top Group C nested within C′

Bottom Nest C′ nested within C

Canvas Center Map Map chart to D
Bottom Map (VC-channel) Map D to C x-axis
Left Map (VC-channel) Map D to C y-axis

Table A.5: When dragging and dropping a data dimension, there is a limited set of available
operations and outcomes. D denotes a dragged data dimension, or aggregate of an dimension.
C is the selected chart, and C′ is a new chart grouped by D.

view that allows the user to select a guide and edit its VC-channels, in the same way
the VC-channels of a chart are edited. These views allow for expressing and editing a
hierarchy of charts, as well as individual charts.

Example workflow: Here we demonstrate a general workflow considering the main
operations of mapping data to charts, mapping data to VC-channels, editing the hierar-
chy of charts, and editing VC-channels.

After selecting a dataset (see Figure A.7a), the user initiates a drag operation
on a data mapping. This operation highlights possible drop areas and a preview
of the result will be shown (see Figure A.7c–d). If the chart is empty, the only
drop area will be the visualization canvas, as shown in Figure A.7b. After the
drop operation, the dropped data mapping becomes the data mapping of the chart,
and the user will see a chart grouped by the given mapping (see Figure A.7d).

AA.4 Implementation and Visual Builder 77

((a)) The user can select, or load a template csv
dataset.

((b)) After loading a dataset, the user can see the
data dimensions, and an empty canvas.

((c)) When initializing a drag, only the canvas is
highlighted as a drop zone.

((d)) After creating a chart, the outline and chan-
nels view are made visible. When dragging a
data dimension, nodes in the outline view and VC-
channels in the channels view, are highlighted as
drop zones.

Figure A.7: Visception, getting started step by step.

With a non-empty chart, two more views will appear: the out-
line view and the channels view, as seen in Figure A.7d. The
outline view shows a tree corresponding to the current hierar-
chy of charts. The user can select a node by clicking it. If it
is clicked again, a chart menu is shown (depicted to the right),
enabling the user to change the chart type. When a node is se-
lected, the channels view will display the VC-channels for that
chart. For example, in Figure A.7d the channels view corre-
sponds to a plot.

With four active views there are some operations to con-
sider. If the user wants to edit an individual chart, the chart is selected by clicking it
in the outline view. When that chart is selected, the channels view will display a set of
editable VC-channels in the form of small labeled icons, grouped into categories. The
category helps the user decide what to edit on a general level, while the icons and ac-
companying labels provide more specific hints. When the user has found and clicked
a VC-channel, the widget for editing it pops up. The widget can be a slider, a color

A 78 Visception

picker or another kind of control. Undo/redo functionality allows the user to try out
different controls and learn from resulting changes to the chart.

By interacting with the widget, and immediately seeing the
results, the user can learn what the VC-channel does. Sequentially
editing VC-channels lets the user control one aspect of the chart
at a time. The user must also be able to map data to a VC-channel.
When initializing a drag operation of a dimension or dimension aggregation, potential
target channels will be highlighted. An example of this is shown in Figure A.7d. If the
user drops a dimension on a VC-channel, a corresponding mapping is created. When
a VC-channel is clicked, the user may turn a mapping on or off, and the widget will
change accordingly.

For example, if a VC-channel is mapped to a dimension, the user can edit the output
range (for example [0%, 100%] on the x-axis, and the domain (for example [0, 20] even
though the dataset only contains [8, 20]).

When a dimension is dragged, the user can drop it on one of the
areas of the node. These areas appear when the drag is initiated.
Table A.5 illustrates the outcomes of a drag operation.

A.5 Results

Here we demonstrate a gallery of example charts created with the
Visception builder. Each example is accompanied by a screenshot of the outline view
displaying the corresponding hierarchy of charts. Each chart is generated by creating
such a hierarchy and applying styling/mappings to one chart at a time.

Figure A.8: Nightingale’s Rose

We selected a broad range of different datasets in
order to demonstrate a wide variety of data mappings
and chart hierarchies. Our generated examples cover
a variety of designs and aim to demonstrate the gen-
erative expressiveness of our framework.

Nightingale’s rose is an early and well-known
data visualization, used by Florence Nightingale to
illustrate avoidable deaths of soldiers during the
Crimean war. A row in the dataset holds a month
number, army size and death counts.

Here we demonstrate the usefulness of nesting
and the monolith mapping. The chart is created by
leveraging the monolith mapping to nest the dimen-
sions disease, wounds, other as a vertical stack inside
a polar area chart mapped to all, as shown in Figure
A.8.

AA.5 Results 79

UCI’s Mushroom dataset [88] has been widely used for machine learning, and as
an example dataset for visualizing categorical data. It has 22 dimensions and over 8000
rows. Each row in the dataset is one mushroom sample. Here we will see how the
identity mapping can be used to decorate output marks at different levels of nesting.

First, we consider 200 samples of mushroom (see Figure A.9) representing the hi-
erarchy gill size → stalk-surface. Within each container, we have a unit chart rep-
resenting all rows in the dataset (one square per row). Within each unit, we nest an
identity-mapped (one datum per parent datum) plot where the symbol is mapped to
cap-shape. The identity mapping allows us to overload the unit squares with more in-
formation, in this case the cap-shape. For the second visualization, we show all 8124

Figure A.9: 200 samples of mushroom.

rows (samples) of mushrooms, by displaying the hierarchy cap-surface → cap-shape
using the squarified chart, with its size VC-channel mapped to count (the count of rows
per aggregation). Inside each square is a unit chart, showing one unit per mushroom.
Layered over the unit chart, an identity-mapped plot (lower left node) has its symbol
VC-channel mapped to the cap surface, and helps show the cap shapes. With both lay-
ering and nesting available, we can overload charts with great flexibility as shown in
Figure A.10.

“At the National Conventions, the Words They Used” was published by the New
York Times in 2012, illustrating how much different words are used by different polit-
ical parties. We create a similar visualization based on data from the 2016 presidential
election. Each row in the dataset represents the following: (word, name, mentions,
Trump, Obama). Here we will see how the clip VC-channel, combined with nesting
can “slice” the circles.

First, we nest a columns chart within the circles, and enable the clip VC-channel,
and use the bounds VC-channel to stretch the columns to properly cover their parent
shapes. The final result is shown in Figure A.11.

A 80 Visception

Figure A.10: 8125 samples of mushroom.

Figure A.11: Recreation of “At the National Conventions, the Words They Used”.

Kaggle’s suicide rate dataset has many dimensions, such as (country, year, sex,
suicides/100k pop, generation, ...). In the following two examples, we explore this
dataset and demonstrate how nesting can be utilized to generate information-rich small
multiples.

For the first example (Figure A.12) we investigate suicide rates per country, by
gender over time. First, we create a unit chart mapped to country. We sort the chart
by avg(suicides). Each unit is subdivided by sex using a rows chart. Within each rows
chart, an area chart is grouped by year (non-sparse), with avg(suicides) mapped to y,
and year mapped to x. The data mapping of the area chart uses the parent datum to
show gender. The non-sparse grouping of the area chart creates empty data points for
years with missing data points, thus exposing this in the visualization.

Next, we look at suicide rates for the different generations per country, over time

AA.5 Results 81

Figure A.12: Suicides per country, by gender, over time.

Figure A.13: Suicides per country over time, by generation, over time.

(see Figure A.13). At the root we have a force-directed layout with one node per
country. Next, we nest year within the root chart, and set the chart type to columns.
Finally, we subdivide the bars by nesting a vertical stack chart (mapped to generation)
within it. In contrast to Figure A.12, Figure A.13 uses a sparse mapping. We show
this example to demonstrate the significance of whether or not empty data items are
included in a nested chart.

The Titanic dataset [1] shows how many passengers perished, and how many sur-

A 82 Visception

Figure A.14: A recreation of Figure 10 of the ATOM paper [76].

vived. Each row represents a passenger. In the following examples, we demonstrate
how the combination of nesting and the unit chart enables the visualization of both the
global patterns and individual details.

Figure A.14 shows a recreation of Figure 10 of the ATOM paper [76], depicting
survivors of the Titanic [1]. Here we see a faceting by sex and class, with a centered
unit layout. By using nesting, we nest a plot within the units, mapping the symbol and
opacity to the survival dimension. We use the color mapping to display gender.

Now we wish to investigate the distribution of survivors, by gender and across dif-
ferent age groups. We do this in the form of a “unit stream” as shown in Figure A.15,
by age. This chart is created with one column for every age bin, then nesting a unit
chart within the columns chart. The unit chart is centered vertically, and ordered by
sex-survival. Finally, we nest a plot within the unit chart, and map fill color to gender,
fill opacity and symbol to survival status.

Figure A.15: A “unit stream”, by age.

AA.5 Results 83

Figure A.16: Two “unit streams”, by gender, then age.

Next, we split up the unit stream by gender. The root of the visualization is a
columns chart, creating one column for every age bin. We subdivide by sex by creating
a vertical stack within each of the age ranges. Then, we nest a unit chart within the
vertical stack. The unit chart is sorted by survival. To customize the symbols, we nest
a plot within it, and map the symbol and opacity VC-channels to survival. The result is
shown in Figure A.16. The only difference between this figure and the previous is that
there is one rows chart inserted into the hierarchy, above all, expressing the “group by
gender” operation.

The Best Bookshelf [53] visualization displays a wide range of dimensions for the
book best sellers dataset. Every row in the dataset represents a single book publication
and related dimensions such as (year, genre, title, author, author age, ...). We recreate
this visualization as shown in Figure A.17 by utilizing nesting, layering and the identity
mapping. Each square represents a book, with a width representing the number of
pages, and the height representing the average rating of the book. Within each square,
the proportion of darkened area indicates the age of the author at the time of publication.
The data is faceted by creating a rows chart mapped to year. Within each year, we
subdivide by genre with a columns chart. Finally, we create a columns chart mapped to
all (one mark per row) where each column represents one book. The width of the bars
is mapped to the numPages dimension. To generate the age indication, as well as the
best seller star, we nest single marks within each bar using an identity mapping. For
the age indicator, we map the age dimension to the height VC-channel. The stars are
created with a plot with the symbol set to star, and isBestSeller mapped to size, setting
it to 0 for False, and a non-zero value for True. We could overload the squares to show
more dimensions using the nesting mechanism.

A 84 Visception

Figure A.17: An approximation of the Best Bookshelf [53] visualization.

FiveThirtyEight’s Gun Crime dataset [19] contains over 100,000 gun crime inci-
dents from 2012 to 2014. Each incident is represented as a row: (year, month, intent,
age, ...). Here we demonstrate deformation behavior, as well as layering and tweaking
of a VC-channel to fit a series of labels along a single arc. At the root node we cre-
ate one circular row for each intent. Each row is divided by sex, by creating a columns
chart mapped to sex. We then map the aggregate count to the size. Within each gen-
der subdivision, we subdivide again by age, using a columns chart. Finally, we nest a
vertical stack mapped to race. To generate labels along the largest outermost arc, we
create a new identity-mapped tubes chart, nest all ages within it as bars, and fit the tubes
chart to match up with the largest arc. We do this fitting by tweaking the start angle
and width VC-channels. The resulting visualization is shown in Figure A.18. The iden-
tity-mapped chart is used to provide a polar space in which the columns by age are laid
out.

The Cars dataset is commonly used as a basis for example visualizations of high
dimensional data. Each row represents a car and a large number of accompanying
dimensions. Here, we demonstrate different chart type nestings, representing the same
data hierarchy: engine-type → all. All of these charts can be toggled between by
swapping the root chart type. The chart types used as root are the following: columns,
unit, squarified, sectors, tubes. It would also be possible to change the chart type of
the lower node. This allows for interactively exploring and prototyping new designs.
Some example charts are shown in Figure A.19.

Axes are available when a chart has its axis VC-channel mapped to data value.
Here, we aim to demonstrate that axes are available for non-nested, nested, Cartesian
and non-Cartesian layouts. Figure A.20 shows a plot with fare mapped to x, and age
mapped to y, both for all entries, as well as for every class-gender permutation. The

AA.5 Results 85

Figure A.18: Gun crime broken down by intent, gender, race.

axes are deformable, are thus nestable and flexible similarly to the charts themselves.
These examples show a range of different expressions that can be achieved via nest-

ing. We have demonstrated implications and uses of different kinds of data mappings
and charts used in combination. The identity mapping allows for overloading charts
with more information and the use of charts as containers for other charts. By combin-
ing custom mappings and nesting, a great variety of visualizations can be expressed.

A 86 Visception

Figure A.19: Variations of the data hierarchy engine-type→ all. Swapping between these vari-
ations only requires the user to change the chart type. Mapped VC-channels are transferred,
thus the style is transferred.

Figure A.20: Titanic survivors, faceted by class and gender, showing a polar plot with Age
mapped to y, and Fare mapped to x for every category.

A.6 Discussion and Limitations

Comparison to other visual builders: Satyanarayan et al. [86] recently proposed a set
of criteria to evaluate visual builders, and compare the three most feature rich, recent
works: Data Illustrator [61], Charticulator [82] and Lyra [85]. Visception focuses on
achieving expressiveness by nesting charts. We aim to show that features such as glyph
composition, coordinate systems and data scoping can all be expressed by leveraging
nesting functionality. Table A.6 summarizes the Visception visual builder in the terms
proposed by Satyanarayan et al. and is meant to be compared with Table 1 in their
paper. By comparing Visception to the other systems in this manner, it can be seen that
Visception achieves many features via nesting and the accompanying data grouping.

Framework: While Visception provides a number of standard charts, there are
several types of more complex or specialized types of visualizations that are currently
not integrated. Our implementation is designed with tabular data in mind. We sup-

AA.6 Discussion and Limitations 87

Component Visception

Marks Instantiation and
Customization

W: Predefined marks only, referred to as chart type
H: Start with default, click chart in outline view to change. Must choose data grouping before
seeing marks.

Glyph Composition H: Combine predefined marks into glyphs as layers. Such layers can be nested within existing
charts, enabling a wide range of combinations and mappings.

Path Points and Path
Segments

W: Map x and y to data dimensions. H: Drag data dimension or aggregate to the x or y VC-
channel of the chart, if the chart type is line, area or stream.

Links between Glyphs W: Limited availability.
H: For example, a line chart can be layered under a plot, with identical x/y data mappings
linking the glyphs. However, for future work we aim to introduce a linking tool similar to that
of Charticulator

Data Scoping for Glyphs W: Custom dimensions and groupings: all, identity, monolith, sparse and non-sparse grouping
modes.
H: An all dimension to create one mark per tuple, a identity dimension to create a single mark
representing the data selection of the parent node (if root, the entire dataset). Grouping by a
dimension implicitly aggregates the data by that dimension. Groupings by a dimension are by
default sparse, i.e they will not show empty marks when nesting. If non-sparse, empty data is
created to populate each nested viewport. To create one glyph per dimension, use the Monolith
grouping of a numeric dimension.

Mapping Data Values to
Visual Properties

H: Drag dimension or aggregate from data view and drop on channel, or select from menu.
Available mappings depend on the data scope of the selected chart.

Scales W: Scales for categorical, temporal, and numerical data
H: Implicitly created when mapping data to channels (visual properties)

Axes and Legends H: Created when a data binding is applied. Hidden by default if chart is nested, except for color
mappings. Each legend/axis is customized with channels, the same way a chart is customized.

Relative Layout H: Use the Bounds channel to free-form position a chart in normalized space.

Layout in a Collection H: Marks are always positioned according to the layout of the selected chart type. Each chart
has a set of visual channels, and in most cases a set of layout channels, some mappable to data
(for example the x and y position of a line chart).

Nested Layout H: If the chart is nestable (appropriate data and chart type), another chart may be nested within
it. Since separate aspects of layouts can be mapped to any eligible data dimension or aggregate,
this implicitly changes the space in which the nesting is done. With the bounds channel we can
edit the bounds of a chart in a normalized space. If the parent space is deformed (i.e an arc) the
geometry of the child chart is deformed accordingly (for example, a square to an arc).

Coordinate Systems W: Cartesian, Polar, extensible to others.
H: Each chart is seen as a set of 2D shapes, these shapes are simply transformed to fit within
the given parent shape. As such, an arc can deform a rectangle to fit within itself. Each chart
type must specify how it is to be deformed.

Table A.6: (W=what, H=how) Summary of the Visception visual builder system components.
To compare to Lyra, Data Illustrator and Charticulator we recommend the user to view this
table next to the table presented in the work by Satyanarayan et al. [86]. Visception achieves
many of these features through the use of nesting, while in other systems these features are
more explicitly specified. Furthermore, in Visception the data scoping of a chart is implicitly
defined by the data mapping of the chart, abstracting the specifics of this task away from the
user.

A 88 Visception

port categorical and numerical data, but currently do not provide specific operations
for specifying categorical dimensions as ordinals, as well as specialized aggregations
for time-oriented data. We also do not provide explicit support for visualizations tar-
geted at graph and network data such as node-link diagrams, and some other common
visualization techniques such as parallel coordinates or parallel sets are also currently
not implemented. However, we believe that they fit well within our architecture and
plan to add these and other relevant chart types in the future. Links and bands between
marks of different charts should also be possible to add to the framework, but it proved
difficult to find ways to make bands and links work across different levels of nesting,
especially given the nature of SVG group hierarchies. The challenge of increasing ex-
pressiveness is not in adding the charts themselves, but in adding general structures to
support different kinds of charts so that they can leverage the existing nesting behavior.

Rendering and layout calculation: When a chart is fully reflowed, its layout is
calculated before it is applied to the corresponding SVG paths. With nesting intro-
duced, it is crucial to only apply the necessary updates to the chart and its child charts.
For example, editing the fill color of a chart should not cause a reflow of its children.
Redundant reflows break the fluidity of the interaction. We use throttling to keep the
system responsive, but additional threading could further improve the situation. We
rarely encountered performance problems with the SVG rendering itself, except when
filter effects like drop shadows are active. This is to be expected, though it would be
beneficial to disable filters effects upon zooming and interaction. Specifying which
step of the pipeline a VC-channel should trigger has removed a great number of redun-
dant full reflows. Furthermore, we noticed that complex nested visualizations expose
some deficiencies in SVG support across different platforms and applications. This is
mainly due to numeric instability arising from deeply nested SVG elements. The exam-
ples in this paper are screenshots taken in FireFox (version 72), which has not shown
these issues.

Data querying: If the dataset is too large, there are potential performance concerns
with regards to both data querying, and rendering of the chart itself. For example, the
suicide dataset had about 100,500 rows, and the aggregation at the deepest level (intent,
sex, age, race) took about 3 seconds to compute on a 2.2 GHz Quad-Core Intel Core i7
with 16GB memory. The data querying issue could be resolved by using a server for
queries. However it is always preferable that the program can be used without a server.
Currently, we lazily compute aggregations as well as their domains when querying
the data. Whenever an aggregate is retrieved for the first time, all aggregates for that
column are computed and cached. We used arrow.js to store the data in a columnar
format, and a recursive data structure to generate queries for each VC-node. Taking a
progressive visualization [7] approach might help in addressing this.

Visual builder user interface: The outline view tree has scalability issues if the
hierarchy of trees gets too wide or too deep. To counter this, the outline view (and
other windows) can be made into a floating window. However, for future work we
would like to incorporate more scalable techniques for showing this.

AA.7 Conclusion 89

A.7 Conclusion

In this paper we, presented our framework for nested visualization design. We intro-
duced the VC-tree as a unified framework for the creation and manipulation of nested
visualizations and demonstrated how it can be used to flexibly specify a wide vari-
ety of data groupings and visual mappings. We showed how the VC-tree provides
fine-grained control over data mappings at different hierarchical levels, while provid-
ing implicit handling of deformation and nesting behavior. Based on our framework,
we contributed a visual builder that exposes the full expressiveness of the framework
through a user interface. To demonstrate the expressiveness of our approach, we pro-
vided a wide range of examples demonstrating various features achievable via nesting.

Acknowledgments

The research presented in this paper was supported by the MetaVis project (#250133)
funded by the Research Council of Norway.

A.8 (Appendix) Overview of Charts and VC-channels

We present the full set of VC-channels in the current implementation of Visception
in Figures A.21 and A.22. Figure A.21 shows all VC-channels that are common to
multiple charts, while Figure A.22 shows all chart types and the VC-channels unique
to each type.

A 90 Visception

Figure A.21: All general VC-channels within Visception. These exist for all charts, with the
exception of label channels not existing for area and line charts, and fill VC-channels not
existing for line charts.

AA.8 (Appendix) Overview of Charts and VC-channels 91

Lorem
ipsum

Figure A.22: All chart types, and VC-channels unique to that chart type within the current
implementation of Visception. Each icon represents a channel, and each VC-channel controls
the layout or some property unique to that chart, or charts with similar output marks.

A

BB

Paper B

Semantic Snapping for Guided Multi-View
Visualization Design

Yngve Sekse Kristiansen, Laura Garrison, and Stefan Bruckner

University of Bergen, Norway

Abstract

Visual information displays are typically composed of multiple visualiza-
tions that are used to facilitate an understanding of the underlying data. A
common example are dashboards, which are frequently used in domains
such as finance, process monitoring and business intelligence. However,
users may not be aware of existing guidelines and lack expert design knowl-
edge when composing such multi-view visualizations. In this paper, we
present semantic snapping, an approach to help non-expert users design ef-
fective multi-view visualizations from sets of pre-existing views. When a
particular view is placed on a canvas, it is “aligned” with the remaining
views–not with respect to its geometric layout, but based on aspects of the
visual encoding itself, such as how data dimensions are mapped to channels.
Our method uses an on-the-fly procedure to detect and suggest resolutions
for conflicting, misleading, or ambiguous designs, as well as to provide
suggestions for alternative presentations. With this approach, users can be
guided to avoid common pitfalls encountered when composing visualiza-
tions. Our provided examples and case studies demonstrate the usefulness
and validity of our approach.

This article was published in IEEE Transactions on Visualization and Computer Graphics vol. 92, no. 1,
pages 43–53, 2021. (doi: https://doi.org/10.1109/TVCG.2021.3114860)

https://doi.org/10.1109/TVCG.2021.3114860

B

94 Semantic Snapping

Consistency

C
om

pa
ct

ne
ss

1 2
2*

Semantic Space

RESULT

INITIAL

O: Differentiate

O: Integrate

Compact, but
difficult to read

Less compact,
but easier to
read

R: Confuser1

O: Integrate

R: Multiples 22*

Result

Figure B.1: Semantic snapping allows the user to perform iterative operations to improve the
compactness and consistency of a multi-view visualization. Underlying algebraic rules called
relations define the available operations for each iteration. In this example showing the 2016
US Election poll percentages and pollsters, from our initial composition we (1) identify a con-
fuser relation between the bottom left and rightmost views showing the same color (red). We
differentiate these views by selecting green as the fill color for the scatter plot. We next iden-
tify a multiples relation in the two left views. We resolve this through one of two integration
operations. (2*) Overlay produces an unsatisfactory result, so we revert and (2) perform a
mirroring operation to arrive at our resulting composition. The semantic map to the right il-
lustrates our path through semantic space.

B.1 Introduction

Multi-view visualizations are frequently utilized to present and analyze data. Dash-
boards, for example, are commonly employed for monitoring and related tasks in a
wide variety of fields. Popular visualization systems like Tableau [97] and PowerBI
provide galleries of carefully crafted templates in order to enable the quick and easy
generation of such visualizations. However, when non-expert users would like to ex-
tend, modify, or customize such a multi-view visualization, they may easily fall prey to
a number of pitfalls that can result in potentially misleading or otherwise problematic
results. Expert knowledge to guide such tasks is mostly available in the form of guide-
lines from the visualization literature, which are not readily accessible to novice users.
Common examples include Qu and Hullman’s constraints, C1 (the same data should be
shown the same way) and C2 (different data should be shown in different ways) [79].
In this paper, we present a method that detects and helps users to resolve such potential
problems in multi-view visualization design in a semi-automatic and guided fashion.

Suppose a user of a visualization system wants to create or extend a multi-view
visualization from a set of pre-existing charts that are individually well-designed (e.g.,
based on a gallery). If the user wishes to use these visualizations in combination (e.g.,
in a dashboard), there are non-obvious design opportunities and pitfalls. Views may
show the same data in different ways, or different data in the same way. A single view
may be highly informative and take up a modest amount of screen space. However,
when used in combination with other views, they may show overlapping information,

B

B.2 Related Work 95

or use too much screen space. These issues can be remedied by showing the same
data with fewer views, i.e., making the overall design more compact. A multi-view
visualization can be made more compact, or less conflicting, by manually redesigning
and tweaking single views. However, manually detecting and resolving conflicts, and
coming up with alternate representations of views, is cumbersome, error-prone and
time-consuming. Our method lets the user perform this process via high-level design-
altering operations.

Our approach uses a semantic space with two axes that represent the degree of con-
sistency and compactness of a multi-view visualization. We examine relations between
views to identify opportunities to improve the overall visualization with respect to these
criteria. We then provide the user with a set of operations to realize the corresponding
changes. For instance, two views may employ the same color map for different quan-
tities. In such a case, our approach may suggest to differentiate the two views by
modifying one of the mappings to increase the overall consistency. Likewise, when the
same data are shown differently in multiple views, our method suggests different ways
to homogenize them. In other cases it may be possible to integrate multiple views in
order to improve the compactness of the visualization.

The contributions of our work can be summarized as follows. Based on a synthesis
of existing guidelines from the literature, we present a novel approach for identifying
and applying potential improvements of multi-view visualizations. We use predicate
logic to represent relations between individual views and propose operations to improve
the consistency and compactness of the underlying visualization based on the identified
relations. Furthermore, we propose a simple workflow and user interface for presenting
and selecting the suggested operations.

B.2 Related Work

Visualization design and measures. Bertin’s Semiology of Graphics [10] and Wilkin-
son’s Grammar of Graphics [108] were two of the early influential works focusing on
formal aspects of reasoning about the effectiveness of visualizations. Munzner [73]
later consolidated and refined existing concepts and terminology, leading to a compre-
hensive framework for thinking about visualization in terms of principles and design
choices.

Bolte & Bruckner [11] survey measures focusing on different aspects of the visu-
alization process: perceptual characteristics, task-oriented quality measures, structure-
oriented measures, and meta-perceptual processes. Perceptual characteristics such as
Cleveland & McGill’s experiments on graphical perception [22] are based on human
performance in elementary tasks such as comparing positions on a common scale.
Other measures express desirable relationships between the data and its visual rep-
resentations. For example, Tufte’s data-to-ink ratio [102] describes the proportion of
pixels used to represent data versus the total amount of available pixels. Furthermore,
Correll et al. [23] address the issue that designs may appear to be showing the data
completely, while hiding important details. They propose actions to remedy discovered
vulnerabilities for different chart types. Behrisch et al. [9] categorized different quality
measures from around 250 papers. Most of these measures were specific to a certain
combination of underlying data, task and visualization technique.

B

96 Semantic Snapping

Through literature review, Zhu [119] points out why existing definitions of visual-
ization effectiveness are often incomplete: they usually take either a data-centric, or
task-centric view on what an effective visualization is.

Data-centric effectiveness measures deal with how accurately a visualization is
showing its underlying data. An example of a data-centric framework for measuring
visualization effectiveness is Kindlmann and Scheidegger’s algebraic framework [54].
By considering symmetries between changes in data space and resulting changes in
visualization space, they describe three principles that should ideally be true for any
data-to-visualization mapping: unambiguous data depiction, representation invariance,
and visualization-data correspondence. We draw inspiration from this model and adopt
a similar line of reasoning in the context of multi-view visualizations. Based in part
on the concept of algebraic visualization design, McNutt and Kindlmann [67] present
a linting mechanism for the process of designing a chart. Their linting is realized as a
Python library that evaluates visualizations created with matplotlib, and returns a list
of rules that are violated. While our work is based on similar fundamental considera-
tions, we focus on multi-view visualizations and expose potential revisions through a
user interface.

Many approaches take into account both data and tasks. Cantu et al. [18] outline an
approach to identify relationships between visualization challenges and representation
components (e.g., data transformations, filtering techniques, visual variables). They ar-
gue that these relationships can further our understanding of the mechanisms behind
visualization components, which could eventually be used to build visualization rec-
ommendation tools. Silva et al. [94] survey work done on using different color scales
in visualization, with a focus on desired properties and guidelines for choosing the right
colors. They highlight that it is important to consider factors such as the type of data,
type of visualization, type of task, and audience.

As pointed out by Zhu [119], there are multiple disjoint, sometimes conflicting sets
of guidelines and measures. Efforts have been made to facilitate convergence and un-
derstanding between different viewpoints. Diehl et al. [27] initiated the VisGuides fo-
rum both to facilitate collection and discussion of visualization guidelines, and knowl-
edge about visualization in general. Engelke et al. [30] highlight that there is a gap
between the communities who propose visualization guidelines, and those who need
them. They provide a conceptual model called VISupply that highlights problems and
opportunities with how guidelines are currently “shipped” to non-experts.

Authoring tools and visualization recommendation. Visualization authoring
tools help users creatively express a wide range of individual charts. While these sys-
tems have much design freedom, they also rely on the expertise of the user. Zhu et
al. [118] survey different tools for automatically generating infographics and visualiza-
tion recommendations.

Examples of systems that mostly focus on authoring and design flexibility include
Charticulator [82], Lyra [85], iVisDesigner [81], Data Illustrator [61], Data Driven
Guides [52]. These systems all use varying underlying frameworks for representing
visualizations. We provide a set of relations and operations specified at a high enough
level so that they can be expressed in terms of most individual frameworks.

Several efforts have been made to make expert knowledge available through soft-
ware. Among them, visualization recommendation systems can potentially take into
account expert knowledge to steer which revised designs are presented to the user.

B

B.2 Related Work 97

MacKinlay’s APT (A Presentation Tool) [64] was among the first of these systems.
He used a composition algebra for designing visualizations, and evaluated their effec-
tiveness in accordance with Cleveland & McGill’s effectiveness metrics [22]. Wong-
suphasawat et al. proposed CompassQL [111] as a general language for querying over
the space of visualizations, to be used in visualization recommender systems. Voy-
ager [110] allows for exploring data via automatically generated visualizations. With
Voyager 2 [113], the user is able to partially specify what a view should show by us-
ing wildcards and also see automatically-generated charts showing data related to the
existing views. Data2Vis [26] is a trainable neural translation model for automatically
generating visualizations from datasets. It is powered by formulating visualization gen-
eration as a language translation problem, where data specifications are mapped to
Vega-Lite specifications [87]. Grammel et al. [36] explore how novices construct visu-
alizations. Their findings suggest the need for a tool that supports iterative refinements,
and explanations that help with learning. Our method shares a similar line of thought
by enabling incremental refinement of a multi-view visualization. Show Me [65] is
a set of user interface commands that provide a way to display an additional data at-
tribute within a view, as well as high-level commands for building views for multiple
fields. Draco [72] makes visualization design guidelines available for a wider audience
by formalizing the knowledge into precise constraints, which can then be used and ac-
cessed in an Answer Set Programming environment. They model single visualizations
as sets of logical facts, and represent design guidelines as hard and soft constraints
over these facts. Dziban [60] further extends Draco with anchoring mechanisms to
help drive specification queries with increased user agency. These works all represent
different ways of representing and reasoning about visualizations. Our method differs
from these approaches in that it focuses in the incremental refinement of multi-view
visualizations.

Multi-view visualization design. One of the most common use-cases of multi-
view visualizations are dashboards.

Sarikaya et al. [84] construct a design space of dashboards, by analyzing multiple
examples of dashboards found “in the wild.”

QualDash [29] is a task-oriented dashboard generation engine that enables the map-
ping of specific user task sequences in healthcare quality improvement to a view com-
position.

For dashboards and multi-view visualizations in general, multiple views must be
laid out on a single screen, or even multiple screens. PanoramicData [116] is a vi-
sual analysis tool using a canvas metaphor to explore and combine data views. We
use a similar metaphor in our approach, although we focus on semantics rather than
filtering and linking the views. Vistribute [42] is a framework that automatically dis-
tributes visualizations and user interface components among multiple heterogenous de-
vices. Scout [99] is a system that helps interface designers to create layouts by using
high-level constraints based on design concepts such as semantic structure, emphasis
and order. While our approach currently does not address layout, we believe that our
method could be combined with similar approaches to also take into account layout
considerations.

Composed views such as small multiples [101] allow for comparing visualizations.
Gleicher et al. [35] provide a general taxonomy of visual designs for comparing visual-
izations, with three categories: juxtaposition, superposition and explicit representation

B

98 Semantic Snapping

of relationships. Elzen and van Wijk [104] leverage small multiples so that they are not
only informative, but also helpful for the data exploration process itself.

Through a series of graphical perception experiments, Ondov et al. [75] investi-
gated which compositions of multiple charts are the most effective for different tasks.
From 360 images of multi-view visualizations collected from IEEE VIS, EuroVis and
PacificVis publications from 2011 to 2019, Chen et al. [20] identify common multi-
view visualization practices, including typical view layouts, view types, and correla-
tions between view types and layouts. The patterns found among these views are made
available through a multi-view visualization recommendation system, allowing users to
interactively browse different designs. We draw inspiration from these approaches by
enabling the transformation of, for example, two bar charts into an item-wise grouped
or chart-wise juxtaposed mirrored bar chart in order to increase the compactness of the
overall visualization, as in Figure B.5.

Conventional snapping creates a “gravity field" around geometric objects, making
it easier to place them together in certain ways. Hudson [43] introduced the notion
of semantic snapping as an interaction technique for geometrically snapping objects
together only if the objects are specified to be semantically related. Our work is a con-
tinuation of this basic concept, extending it to the scenario of multi-view visualization
design and focusing on the semantic rather than geometric aspects.

Shadoan & Weaver [93] explore semantic relations in multi-view visualizations us-
ing a hypergraph querying system. While such queries are constructed similarly to
relations in our approach, the former are driven through cross-filtering on attribute
relationship graphs, while ours draws from rules heavily inspired by Kosslyn’s prin-
ciples [55] and Kindlmann and Scheidegger’s algebraic framework [54]. The latter
framework has been used to identify effective visualization types for certain user tasks,
e.g., table cartograms [66]. Kim et al. characterize responsive visualization strategies
via their targets, i.e., element(s) of a design that change, and actions, i.e., how ele-
ment(s) are changed [51]. This semantics-based characterization parallels our notion
of relations and operations, although the underlying models differ.

Qu and Hullman [79] discuss how to operationalize Kosslyn’s principles [55] with
the two following constraints: C1 (encode the same data in the same way), and C2
(encode different data in different ways). These two constraints are further detailed
by specifying lower-level constraints on encodings across two views. In a later pa-
per [80], they found through a Wizard-of-Oz study that Tableau users unknowingly,
and with some exceptions, respected their constraints C1 and C2. They found that
study participants were positive to having a consistency checker tool to surface such
warnings. Similarly to Qu and Hullman, we operationalize the principles C1 and C2 on
an encoding-level, but we do so by using a model inspired by Kindlmann and Schei-
degger’s algebraic framework [54]. Furthermore, we present a practical realization of
this concept that both shows how to identify potentially problematic relations and in-
troduces a set of concrete operations to address the relations, i.e., remove the relation
itself or a problem caused by the relation.

B

B.3 Semantic Snapping Model 99

Consistency

C
om

pa
ct

ne
ss

Semantic Space

Op. 2

Op. 3

Op. 1
Redundant

Inconsistent Consistent

Compact

}
}
}

}
Op. 4:

Same grouping,
different data on y-axis

Same grouping,
different data on y-axis

Inconsistent data domain
(y-axis value range)

O: Homogenize

Su
m

 W
ho

le

30

Su
m

 W
ho

le

3010

Su
m

 P
ar

t

30

Su
m

 P
ar

t

R: Multiples

R: Multiples

R: Multiples

Figure B.2: Conceptual figure showing the semantic space with relations and operations for
our semantic model. Operation 4 displays the homogenize operation which is available as a
result of a multiples relation (the two axis scales are different, but should be the same if the
underlying data represents the same quantity).

B.3 Semantic Snapping Model

Semantic snapping is the process of incrementally modifying a multi-view visualiza-
tion by aligning its individual views with respect to their semantic, rather than their
geometric, attributes. The main underpinning of our method is that a multi-view vi-
sualization, and its potential revisions, can be placed into a semantic space with two
dimensions representing the degree of compactness and degree of consistency. We pro-
vide a conceptual overview of this semantic space in Figure B.2. In other words, a
potential revision of a design is either more or less compact, or more or less consistent,
than the original design. Our method identifies these potential revisions, and presents
them to the user as operations. By executing these operations, the user is able to intu-
itively navigate the semantic space of revised designs.

Achieving high-level goals by piecing together low-level modifications can be te-
dious, especially for novice users. In other software, such as word processors, semi-
automatic tools help with this workload by highlighting errors, and suggesting correc-
tions to these errors. Previous approaches, such as McNutt and Kindlmann’s linting
mechanism [67], have already explored this direction by providing functionality akin
to a spell checker for a single visualization. In contrast, semantic snapping can be seen
as more similar to a grammar checker, since it focuses on relationships between visu-
alizations, just as a grammar checker analyzes relationships among words or phrases.
Errors or potential errors represent detected inconsistencies or redundancies between
views, and error corrections are represented as suggested operations to revise the com-
position of views.

Our method identifies existing and potential semantic inconsistencies and redun-
dancies, so-called relations, between single views. Each relation identifies a potential

B

100 Semantic Snapping

10

sc
or

e

category

3

ra
nk

category

Canvas

View 2

View 1 G C D V
category category x-position

y-position

light blue

rank

--

bar order

bar height

bar fill

category

category

category category x-position

y-position

dark blue

score

--

bar order

bar height

bar fill

category

category

v = 1d ≠ 1c = 1g = 1

d ≠ 1))D ≠ 0g = 1 c ((c = 1V VE E

Figure B.3: Here we see two views, and the (G, C, D, V) tuples corresponding to the three
channels representing the y-axis (bar height), x-axis (bar order), and fill color. The compar-
ison of the two highlighted tuples are what identifies these two views as multiples (1) same
grouping.

problem which can be resolved by an operation. Thus, each operation is a high-level
modification to the overall design. It is necessary to have the user involved in each
modification to the design, since consistency and compactness are sometimes traded
off for other design considerations [80]. The cycle of finding relations to infer avail-
able operations is repeated every time the design is altered.

B.3.1 Semantic Space

We begin with defining the terms that comprise our semantic space. A canvas is com-
posed of multiple views of a single tabular dataset, where each individual view displays
a single chart of a certain type (for example a bar chart, scatter plot, line chart, etc.).
A chart grouping is a data dimension by which a chart is grouped, similar to SQL’s
GROUP BY command. For example, a bar chart grouped by country will have one bar
for each distinct country in the dataset. Each chart has a set of channels, which may or
may not be mapped to data. Data shown by a channel is denoted as a data mapping,
which may also be empty (indicating an unmapped channel). For example, consider
the fill color channel in a scatter plot, which can optionally be mapped to data to dis-
play an additional quantitative data attribute for each mark. When a channel has a data
mapping, the data are scaled from a data domain to a resulting visual output which di-
rectly or indirectly affects the appearance of the chart. The data domain denotes the
minimum and maximum value of a certain attribute, or attribute aggregate, and is used
as an input for the scale from data to a resulting visual output. When groupings dif-
fer, sampled data domains may also differ. Furthermore, domains may be different due
to custom configuration of individual views. While there are different ways to arrange
and transform tabular data, we limit the scope of chart groupings and channel mappings
to single data dimensions.

Summarized, a view has one chart grouping and multiple channels. Each channel

B

B.3 Semantic Snapping Model 101

Relation Specification Illustration Possible
Operations Illustration

(a)
Full
redundancy g = 1∧∀c(c = 1→ d = 1) D1D1 Delete one D1

(b)
Partial
redundancy g = 1∧∀c((c = 1∧d ̸= 1)→∃!D = 0) ∈D2D2 D1D1

Integrate, or
delete D1 view

D2

(c) Multiples (1)
same grouping

g = 1∧∃c((c = 1∧∃D ̸= 0)→ d ̸= 1) D1 D2 Integrate or
homogenize D1

D2

(d) Multiples (2)
same data

g ̸= 1∧∃c((c = 1∧∃D ̸= 0)→ d = 1) D1 D1 Homogenize D1 D1

(e) Hallucinator g = 1∧∃c(c = 1∧d = 1∧∃D ̸= 0∧ v ̸= 1) D1 Homogenize D1

(f) Confuser ∃c(c = 1∧d ̸= 1∧ v = 1) D2D1 Differentiate D1 D2

Table B.1: All relations specified in terms of our model. The lower case letters: g, c, d, and v
represent equalities (1) or inequalities (0) between chart groupings, channels, data mappings
and visual outputs, and the specifications are predicate logic expressions operating primarily
on these (lower case) equalities or inequalities. The uniqueness quantifier on ∃!D indicates
that there exists exactly one data mapping that satisfies a certain condition, for example being
unmapped (= 0) for (b). For the partial redundancy relation, D1 ∈ D2 signifies that all data
shown by one view (D1) is also shown by the other view (D2).

has a data mapping, a data domain (if the data mapping is non-empty), and a resulting
visual output. A view is part of a canvas, and a canvas has a certain position in the
semantic space.

The semantic space has two axes, representing (1) redundancy/compactness (short-
hand: compactness axis) and (2) inconsistency/consistency (shorthand: consistency
axis). The compactness axis ranges from redundant to compact, whereas the consis-
tency axis ranges from inconsistent to consistent. For example, if a canvas is made
more compact by turning two views into one, the canvas becomes less redundant, thus
moving up along the compactness axis. Semantic snapping corresponds to movement
along one of these semantic axes.

It is important to note that more consistency and compactness is not always de-
sirable. For example, Qu and Hullman [80] found that in cases, homogenizing axis
domains is undesirable due to the extra white space it generates. Conversely, a compact
design is not always more readable, or the most ideal for telling a story. Our opera-
tions make it possible for the designer to explore this space of alternative designs more
rapidly, one semantic axis at a time.

Relations between individual views identify not only where the canvas is currently
located, but also which changes (denoted operations) are possible.

B.3.2 Algebraic Relations

Relations are explicit specifications of redundancies or inconsistencies between views.
Although relations themselves do not indicate whether a design is good or bad, they are
available to help the user identify potential problems in their overall visual design.

B

102 Semantic Snapping

Our specification of relations draws both from Qu and Hullman’s evaluation con-
straints [79] and a generalization of the principles established in Kindlmann & Schei-
degger’s algebraic model of visual design [54]. Originally developed in the context of
only a single visualization, their model describes the relationships between three el-
ements of the visualization process: the data, the representation of the data, and the
resulting visualization. We adopt two principles from this model, which are easily
framed within the two high-level constraints stated by Qu and Hullman [79]:

C1 Encode the same data in the same way. A violation of this constraint corresponds to
representation invariance in Kindlmann & Scheidegger’s algebraic model, which states:
if the data of two visualizations are the same, the resulting visualizations should also
be the same. A violation of this is called a hallucinator (Table B.1e).
C2 Encode different data in different ways. A violation of this constraint has a corol-
lary again in Kindlmann & Scheidegger’s model as an unambiguous data depiction,
which states: if the resulting visualizations are the same, the data should also be the
same. If this principle is violated, we say that there is a confuser (Table B.1f).

We represent aspects of a single view with the following four elements: the chart
grouping (G), a channel (C), the data shown by the channel (D), and the resulting visual
output (V). Typically, the term “channel" can denote the entire mapping from data to
visual output. However, in our case C simply represents the name of the channel,
e.g., fill color, and we use the other lower-level elements to concisely specify relations
between views as predicate logic expressions as specified in Table B.1.

A single view has a grouping (G), which is the first element in our model. Each
view has multiple channels, with (C) referring to a single channel, and correspondingly
each single channel has a data mapping (D) and a resulting visual output (V). Thus,
each view has one (G, C, D, V) tuple per channel, where G is always the same, while
(C, D, V) is unique to each channel as shown by Figure B.3. Consider a bar chart
grouped by category, showing average rank on the y-axis. Since G=category, C=bar
height, D=average rank, and V =y-position, the tuple for the channel is then (category,
bar height, average price, y-position) as seen in Figure B.3. If a channel does not have
a data mapping, this is expressed as D = 0.

By considering a single view to be a set of (G, C, D, V) tuples (see Figure B.3), we
can establish relations between two views by using predicate logic on the tuples and
their equalities. When comparing the tuples of two views, we use the same lower case
letter to denote equality or inequality. For instance, if two views have the same chart
grouping, the relation between G1 and G2 is the identity: g = 1. Conversely, if the
groupings are different, then g ̸= 1. If a relation exists between the views A and B, and
between A and C, it also exists between B and C.

A relation exists between two views if there are two tuples (one from each view)
that satisfy the predicate logic formula. For example, consider the predicate logic ex-
pression of the multiples relation: g = 1∧∃c((c = 1∧∃D ̸= 0)→ d ̸= 1). This relation
exists between two views if there is a pair of channels (one from each view) that satisfy
this expression. As illustrated in Figure B.3, the two highlighted views have the same
grouping (category), but are showing different quantities on the y-axis (rank vs. score),
making the multiples expression come true.

As discussed by Qu and Hullman [79], two encodings are showing the same field
when the fields are semantically the same. We use this definition. Thus, if two fields

B

B.3 Semantic Snapping Model 103

are semantically the same, d = 1. To confirm semantic sameness, the user is asked
to confirm if fields are the same, as seen in Figure B.5.1b if this cannot be directly
determined.

We also specify that d ̸= 1 if both data mappings are empty, but the grouping is
different. For example, suppose two pie charts are respectively grouped by gender, and
age group, and are both colored red. A sector of the pie chart can then represent either
an age group, or a gender, yet they are colored the same. This is a potential confuser
since each are showing different data, but are colored the same.

We define that the stroke color channel of charts without filled shapes (e.g., a line
chart), and the fill color channel for a any chart with a fill (e.g., bar chart, scatterplot),
is the same. For example, in the example shown in Figure B.1.1 we see a line chart
and a scatter plot both using the color red. With our notion of channel equality, c = 1
since the stroke color of the line chart is the same as the fill color of the scatterplot.
Furthermore, they are grouped differently (g ̸= 1), and both of the color channels are
not mapped to data. As a result of these two factors, the data mappings of the two
channels are seen as different: d ̸= 1.

The degree of redundancy and compactness in a view can be measured by the num-
ber, and severity, of detected relations. A design is more compact if it has fewer re-
lations indicating redundancy, and more consistent if it has fewer relations indicating
inconsistency. For our method, it is only necessary to know that a relation exists, and
that it can be resolved. However, generating a quantitative score from these relations
would be possible, and useful for many other problems. These relations are specified
and visually summarized in Table B.1. We discuss each of these relations in detail in
the remainder of this section.

R1: Full Redundancy. If two views are showing exactly the same data, there is a full
redundancy relation between them. The full redundancy relation is present when two
views have the same grouping (g = 1) for all channel pairs (∀c). If the channels are
the same (c = 1), then they also show the same data (d = 1). For example, if two bar
charts are both grouped by number of cylinders (g = 1), and their bar height is mapped
to average price, then (c = 1→ d = 1) is true, i.e., there is a full redundancy relation
between them.

R2: Partial Redundancy. Two views A and B are partially redundant if A is showing
all data shown by B, as well as some data not shown by B. More formally, two views are
considered partially redundant if they have the same grouping (g = 1), and for all pairs
of channels showing different data (c = 1∧ d ̸= 1), one of the channels is unmapped,
and all the unmapped channels consistently belong to the same view (∃!D = 0). For
example, consider two bar charts, both grouped by number of cylinders (g = 1) and
with bar height mapped to average price, but with one chart also indicating the number
of cylinders via its fill color channel. When comparing the fill color channels of the
charts (c = 1), we see that they have different data mappings (d ̸= 1), and that one of
them is not mapped to anything (∃!D = 0). Thus, all the data shown by the one chart is
also shown by the other chart.

R3: Multiples. There are two kinds of multiples: (1) views with same grouping but
different data, or, conversely, (2) views with different groupings but same data. As
an example of the former, suppose two equally grouped bar charts showing a different

B

104 Semantic Snapping

quantity via the bar height channel as illustrated in Figure B.4a and b. Multiples with
different groupings could for example be two differently grouped bar charts showing
the same aggregated dimension via the bar height channel (see Figure B.4a and d). The
multiples relation is specified more precisely in Table B.1c-d.

R4: Hallucinator. Corresponding to Kindlmann and Scheidegger’s model, a halluci-
nator is present when the same data are shown in different ways. A hallucinator exists
on a canvas if two views with the same chart grouping (g = 1), have a common channel
(c = 1) showing the same data (d = 1), but with different visual output (v ̸= 1).

R5: Confuser. A confuser exists on a canvas if the same channel (c = 1) of two views
has the same visual output (v = 1), but different data mappings (d ̸= 1). As an example,
consider charts using the same fill color (for example, reds) to show different data.

A

C D

B

0
50

100
150
200
250

fou
r six fiv
e

thr
ee

tw
elv

e
tw

o
eig

ht

av
g

ho
rs

ep
ow

er
:

0

10k

20k

30k

fou
r six fivethr

ee
twelv

e two
eig

ht

av
g

pr
ic

e:

0

10k

20k

30k

fou
r six fivethr

ee
twelv

e two
eig

ht

av
g

pr
ic

e:

0

10k

20k

30k

fou
r six fivethr

ee
twelv

e two
eig

ht

av
g

pr
ic

e:

20
40
60
80

100

two four 0

av
g

pr
ic

e:

R: Partial
redundancy R: Multiples

R: Multiples

R: Multiples

Figure B.4: These four figures illustrate all degrees of redundancy. There is a multiples relation
between (a) and (b) since they both have the same grouping, but are showing different data via
the bar height channel. Between a and c we see there is a partial redundancy, since (a) is
showing the exact same data as (c), but (c) is also showing more data via the fill color. (a) and
(d), as well as (c) and (d) are differently grouped multiples showing the same data via the bar
height.

Relations identify redundancies, inconsistencies, and alternative design opportuni-
ties. They are detected by iterating over all view permutations and checking whether
the permutation satisfies the predicate logic expression that corresponds to the rule. If
the expression is satisfied, the relation exists between the views. Each relation has cor-
responding "resolutions" – operations which resolve the given relation by altering one
or more of the affected views.

B

B.3 Semantic Snapping Model 105

B.3.3 User Operations

Operations resolve potential problems between views of a canvas. The main idea be-
hind each operation is to resolve a certain relation by changing or removing one or
more views. At a low level, operations can, for example, transfer a data mapping from
one view onto another, or replace two views with another view showing the same data.
Our set of operations do not exhaustively express all possible combinations of low-level
changes, but serves to demonstrate the wide range of possible operations to navigate
the semantic space of revised designs.

Our model specifies the following classes of operations, which we summarize in
Table B.1 along with associated their associated relation(s).

O1: Delete. The first operation is the most simple. If there is a full redundancy relation
between two views, the user may delete one view. With one of the views removed, the
formula for full redundancy, g = 1∧∀c(c = 1→ d = 1), will not evaluate to true for
that pair of views, since the pair no longer exists.

O2: Homogenize. The homogenize operation resolves hallucinator, as well as multi-
ples relations, where the same data are shown differently. On a high level, the homog-
enize operation makes dissimilar views more similar. For example, consider two bar
charts that are showing the same data dimension with a different color scheme (hal-
lucinator), as in Figure B.8.1a, or that are using different data domains (multiples), as
shown in Figure B.6.2. The homogenize operation resolves these conflicts by making
the visual outputs, or data domains equal for the two views. If visual outputs are made
equal, the v ̸= 1 portion of the hallucinator will evaluate to false and thus remove the
relation. For multiples with different domains, equalizing the domains will make the
views consistent. If only the data domains are different, the operation is presented to the
user as homogenize data. When the visual outputs differ, the user will see the operation
as homogenize style, although it also implicitly homogenizes the data domains.

O3: Differentiate. The differentiate operation addresses a confuser, where two views
show different data in the same way. This is achieved by making the views to show dif-
ferent data in different ways (Table B.1f). For instance, if different data are shown using
the same color scheme, the differentiate operation will assign different color schemes
to the views. An example of this operation could take two views showing different data,
such as age and income, where both views are mapped to the color red. This is am-
biguous. Our solution is to use a different color scheme for one of the views. When the
visual outputs are made different, i.e., from v = 1 to v ̸= 1, the formula for a confuser,
c = 1∧d ̸= 1∧ v = 1, will evaluate to false, since v ̸= 1.

O4: Integrate. The integrate operation resolves redundancy to create a visually com-
pact canvas, and can be used to resolve partial redundancies and certain multiples re-
lations. With a partial redundancy relation, there are two possible solutions: delete
the view showing the least data, or integrate the “missing” mapping into this view
while deleting the other (Table B.1b). Views sharing a multiples relation where the
data grouping is the same (Table B.1c) can be integrated in several ways. Since the
multiples relation can only exist between two views, the act of combining these views
by integration also removes the relation from the canvas. Views that are highly seman-
tically similar are sensible to integrate, provided that: (1) the chart type is the same,

B

106 Semantic Snapping

Listing B.1: Pseudocode of the general execution flow of semantic snapping.
1def f i n d R e l a t i o n s (v iews) :
2byView = { view : [] f o r view in views }
3s u b s e t s = p e r m u t a t i o n s (v iews)
4f o r view1 , view2 in s u b s e t s :
5f o r r e l a t i o n F n in a l l R e l a t i o n s :
6i f r e l a t i o n F n (view1 , view2) :
7f o r view in s u b s e t :
8byView [view] . append ({
9’ s u b s e t ’ : [view1 , view2] ,
10’ r e l a t i o n ’ : r e l a t i o n })
11re turn byView
12
13def s e m a n t i c S n a p (v iews) :
14r e l a t i o n s B y V i e w = f i n d R e l a t i o n s (v iews)
15view = u s e r I n p u t () # User s e l e c t s a v iew
16r e l a t i o n s = r e l a t i o n s B y V i e w . g e t (view)
17o p e r a t i o n s = [f i n d O p e r a t i o n (r) f o r r in r e l a t i o n s]
18d i s p l a y (o p e r a t i o n s) # User s e e s o p e r a t i o n s
19s e l e c t e d O p e r a t i o n = u s e r I n p u t () # User s e l e c t s
20newViews = s e l e c t e d O p e r a t i o n . e x e c u t e ()
21re turn newViews

and (2) if d = 1 for the channel representing the x-axis. There are four ways to per-
form this integration: overlay, group, stack, and mirror. Overlay integrates multiple
views into the same coordinate system. This operation can be applied to scatter plots
and line charts. Figure B.1.2* shows an example of an overlay operation when applied
to a line chart. The mirror operation can be applied to line charts, area charts, and bar
charts. This operation first aligns the two views and then mirrors one of them, caus-
ing their marks diverge from a common origin in a manner similar to violin plots. We
demonstrate an example of this in Figure B.5.2b. Similar to the group operation, the
stack operation stacks views into a single view, turning, for instance, a set of bar charts
into a stacked bar chart as shown again in Figure B.5.2c. The group integration bundles
several views into one single view. It can, for example, turn multiple bar charts into a
grouped bar chart, as illustrated in Figure B.5.2d.

Operations make high-level changes to the canvas, making it more compact or more
consistent. For an operation to be applicable to a design, a certain relation must exist.
When the user selects a view in the interface, our method reveals available operations to
resolve a given relation. When the operation is performed, the corresponding relation
is addressed.

B.3.4 Snapping Algorithm

The goal of our approach is to provide the user with a set of available design-
altering operations upon selection of a single view. The outlined algorithm in List-
ing B.1 achieves this goal by identifying all relations and mapping them to operations
for any selected view. When an operation is selected, a revised set of views is gener-

B

B.4 Workflow & Implementation 107

Listing B.2: Pseudocode of an example relationFn, invoked at Listing B.1 line 6, modelling a
hallucinator as specified in Table B.1e.

1 def i s H a l l u c i n a t o r (view1 , view2) :
2 i f i sSameGrouping (view , view2) :
3 p a i r s = f i n d C h a n n e l P a i r s (view1 , view2 , {
4 ’ d ’ : 1 , # same da t a
5 ’ v ’ : 0 , # d i f f e r e n t v i s u a l o u t p u t
6 ’ mappedToData ’ : 1 }) # D != 0
7 re turn p a i r s . l e n g t h > 0
8 re turn 0

ated. The relations correspond to the descriptions in Table B.1, and can in practice be
modeled as constraints or functions.

The first step of the algorithm is to identify all relations between all subsets of views.
The logic of each relation is outlined in Table B.1, and is mapped to a relation function
that takes in two views, and returns 1 if the relation exists between the views, or 0 if the
relation does not exist between the views, as exemplified in Listing B.2. Consider line
5 in Listing B.1. Here we loop over each relationFn (relation function), and invoke it
using two views as arguments. If this invocation returns 1, the relation exists between
the two views. When relations are identified for all views, they are grouped by the
views they affect. When the user selects a view, the view’s relations are looked up and
used to identify which operations are possible. Line 17 of Listing B.1 illustrates how
relations are mapped to corresponding operations. When an operation is executed, a
new set of views is generated and displayed to the user. With this new set of views, the
algorithm is re-run, recomputing relations and potential operations.

B.4 Workflow & Implementation

Our method improves and refines canvas designs incrementally. In order to create a
canvas, single visualizations must also be generated. While the creation of single vi-
sualizations is not a part of our method, we used the existing Visception visualization
editor environment [56] as a basis to realize and demonstrate our method. Our semantic
snapping interface enables the user to build a canvas using simple drag & drop oper-
ations from a visualization gallery and to optimize the design with semantic snapping
step by step. In order to build a canvas, the user places individual views into a grid
layout and is presented with a set of potential operations at every step. While brows-
ing the operations, the user is presented with information about what they do and what
potential problems in the design they resolve.

We use two primary views in our interface: the singles view and the canvas view.
Both are shown in Figure B.5.1. The singles view is a view from where the user can drag
single visualizations into the canvas view. Each tile in the singles view represents a data
source, which, when clicked, expands to more tiles–one for each single visualization of
that dataset. We highlight two of these single visualization tiles in Figure B.5, which
have been dragged into the canvas view.

B

108 Semantic Snapping

0

10

20

30

40

2013 2014 2015 2016 2017 2018

2013 2014 2015 2016 2017 2018

40
30
20
10

0

su
m

 E
ur

op
e

0
10
20
30
40

su
m

 N
or

th
 A

m
er

ic
a

0

10

20

30

40

50

60

2013 2014 2015 2016 2017 2018

Consistency

C
om

pa
ct

ne
ss

1 2

Result

Semantic Space

0

10

20

30

40

su
m

 E
ur

op
e

2013 2014 2015 2016 2017 2018
0

10

20

30

40

su
m

 N
or

th
 A

m
er

ic
a

2013 2014 2015 2016 2017 2018

R: Multiples

R: Multiples

RESULT

2

1

Singles
view

Initial
canvas view

Figure B.5: Semantic snapping interface and workflow. The semantic snapping interface
presents the user with a canvas to place single views within a larger layout. A clickable button
on top of each view exposes the possible operations available to resolve a relation between two
views, in this case a multiples relation (1). The user homogenizes the two views after confirm-
ing that the y-axes are semantically the same. This step represents a move towards increased
consistency in semantic space. The user may choose to keep or undo the result of any per-
formed operation. On execution of an operation, we recompute the set of possible operations.
The user may next perform any one of three available integration operations to resolve a multi-
ples relation in this view (2). The user selects the mirror operation to increase the compactness
of the visualization in semantic space.

B

B.5 Case Studies 109

B.4.1 Workflow

The main workflow of using semantic snapping is integrated into the canvas view. We
demonstrate this workflow in Figure B.5. As the user is constructing a canvas with
multiple views, our approach detects relations and makes the corresponding operations
available along every step of the way. Whenever an existing view is added to the design,
or modified by an operation, relations are re-detected and the corresponding operations
are updated. In order to see possible operations, the user clicks on the view of interest.
When the view is clicked, a menu appears, showing how many operations are available
per category (homogenize data, homogenize style, differentiate, and integrate). Only
categories with available operations are displayed. The user can then click on a category
and see all available operations as tiles. Each operation tile informs the user of the
potential problem and its solution. Consider the canvas in our workflow example where
there is a multiples relation between two bar charts (Figure B.5.1), showing sum of
sales in Europe, and North America. To verify that the fields are semantically equal, the
operation tile will ask the user "Are sum(Europe) and sum(North America) representing
the same quantity?". If the user clicks "Yes", the domains are made consistent using
a homogenize operation. When any operation is executed, the user is given the option
to undo or keep it as shown in Figure B.5.2. If "keep" is clicked, the current canvas is
re-evaluated and the user can proceed to explore other operations, add new views, or
otherwise customize the setup.

B.4.2 Implementation

We implemented semantic snapping within the framework of Visception [56], an ap-
plication written in Javascript ES6 using VueJS for user interface components and D3
for SVG rendering. The underlying framework of the authoring tool was leveraged to
realize the relations and operations to support semantic snapping.

The relations are specified as functions taking in two views as parameters, return-
ing true if they match the given relations. Operations are also defined by functions that
take in a set of views, and a detected relation. From this set of views and the detected
relation, we can infer what operations are possible, and also take into account the spe-
cific chart type and other edge cases. When the user modifies a design, a pipeline of
four steps is run. First, all relations are detected for all sets of relations as shown in
Listing B.1, and the relations are stored so that they can be looked up on a per-view
basis. When the detection is done, the editor is ready for the user to specify which
view to change. When the user clicks on a view, all relations and corresponding sets of
views are looked up, and all possible operations are computed. When the user selects
an operation, it is executed, and the existing set of views is modified, and relations are
recomputed.

B.5 Case Studies

We next demonstrate our semantic snapping method workflow in three case studies.
These studies include data from the 2016 US Election Results, Nightingale’s historic
Soldier Morbidity & Mortality, and a COVID-19 dataset. We selected these particular

B

110 Semantic Snapping

datasets as they are both representative of the type of data we expect to be used for our
approach, as well as for their familiarity and applicability to the visualization commu-
nity. Each case study represents a possible pathway through semantic space from an
initial to a more compact and consistent design. We illustrate such pathways through
semantic space with a semantic space map positioned in the upper right of each associ-
ated figure.

B.5.1 2016 Election Results

In this case study we demonstrate a user flow that identifies confuser and multiples
relations that are resolved via differentiate and integrate operations. We also use this
study case to demonstrate a flexible workflow whereby the user may perform and then
revert an operation to arrive at their preferred final design.

In Figure B.1 we see an initial canvas comprised of three views depicting data from
the 2016 US Election. These views show election polls over time for the two main
candidates (left, top view: Democrats, bottom view: Republicans), as well as average
pollster ratings for the two candidates (right scatter plot view). We localize our position
in semantic space at the origin (pos. 1) in the map in the upper right of Figure B.1. We
quickly identify a confuser relation between the bottom line chart and the right scatter
plot (Figure B.1.1). This is because the color channels of the two views are using
the color red as visual output. This is particularly misleading in the right scatter plot
view, where each dot represents a pollster, since red may indicate that all pollsters are
advocates for the Republican party. Since these charts are using the same visual output
to represent different data domains, our model recommends a differentiate operation to
change their respective visual outputs. We change the color of the scatter plot to green,
as this is color is more neutral. We keep the red color in the lower left view; this makes
sense to remain red, as this is the color of the US Republican Party. In our semantic
map we have increased the consistency of our canvas and are now at pos. 2.

We next observe a correspondence between the two leftmost views. These views
share the same x-axis, but show a different quantity on the y-axis (bottom view: avg.
Trump, top view: avg. Clinton). In other words, they share a multiples relation. We
consequently can integrate them to produce a more compact visualization using the
mirroring (Figure B.1.2) or overlaying operation (Figure B.1.2*). Integrating these
charts additionally produces a more consistent visualization, because both overlay and
mirror perform an implicit axis homogenization step. To mirror or overlay, we simply
select and execute either operation. In this case we first try overlay (Figure B.1.2*).
However, while the result is very compact, it is difficult to read. We choose to do a
different integrate operation to resolve the multiples relation. We revisit the available
operations for this relation and select this time to mirror the two views (Figure B.1.2).
This path in semantic space leads us to an equally consistent, while slightly less com-
pact visualization. The resulting chart composition, however, is easier to read, which
illustrates the flexibility of our approach in incorporating user goals and decision pro-
cesses.

B

B.5 Case Studies 111

INITIAL RESULT

O: Integrate

O: IntegrateR: Multiples1

R: Multiples2

Consistency

C
om

pa
ct

ne
ss

1

2

Result

Semantic Space

Figure B.6: Case study workflow demonstrating semantic snapping to resolve two multiples
relations in the canvas depicting 1858 solider morbidity & mortality from the Nightingale
dataset. This end result is a semantically consistent and compact visualization.

B.5.2 Nightingale Soldier Morbidity & Mortality in 1858

In this case study we use the popular Nightingale solider morbidity & mortality dataset
to illustrate the use of additional operations to resolve multiples between canvas views.

Figure B.6 shows the fate of British soldiers in the year of 1858 in the Crimean
War. In our traversal through semantic space we begin again at the origin in our se-
mantic map at the upper right (pos. 1). The top two views of the initial canvas display
area charts. The left view plots the number of soldier deaths over time while the right
plots the number of unharmed soldiers over time. Because these two views comprise
the same grouping (soldier morbidity & mortality) with a different data domain plotted
onto the y-axis, we can say that these views share a multiples relation (Figure B.6.1).
We can compact the views by mirroring (integrating) the views. When the charts are
mirrored, the domains are also implicitly homogenized, which additionally increases
the consistency of the resulting chart. This brings us to pos. 2 in our semantic map.
It would also be possible to keep the multiples relation, and only homogenize the data
domains on the y-axis. However, our choice to compact the views with mirroring illus-
trates that, while our model can show potential problems in a canvas, it is ultimately up
to the user to decide how they wish to design their visualization.

We may also compact the three bar chart views arrayed along the bottom of the
canvas that show different causes of soldier death (Figure B.6, bottom of initial canvas).
Each of the three views plots by number of deaths caused by disease, wounds, or other,
respectively, over time. Because these views share the same grouping (cause of solider

B

112 Semantic Snapping

5

������������������������

����������
���� ����

4 2

����
�

��������������

M F

M F

���������

����������

RESULT

O: Differentiate

O: Integrate

O: IntegrateO: Homogenize
O: Homogenize

Consistency

C
om

pa
ct

ne
ss

1 2 3 4 5

6

Result

Semantic Space

R: Multiples

INITIAL

16
R: ConfuserR: Multiples

3
R: Hallucinator R: Hallucinator R: Hallucinator

Figure B.7: Case study workflow demonstrating semantic snapping to resolve a COVID-19
dashboard with a confuser, several hallucinators and two multiples relations. We resolve these
relations via a series of operations that include homogenize, differentiate, and integrate.

death) and data domain on the x-axis (time), but their data domain plotted to the y-
axis is different, we identify a multiples relation (Figure B.6.2). However, by looking
at the data, we also know that the y-axes represent the same semantic quantity – i.e.,
number of deaths. As a consequence of this, they can be integrated via a group or stack
operation. Since our goal is to produce a maximally compact visualization, we choose
to stack the views. This step additionally homogenizes the data domains for increased
consisstency. This brings us to the result point in our semantic map.

B.5.3 COVID-19 in Germany

COVID-19 dashboards are now ubiquitous in society with great importance for public
health. However, integration of numerous charts to demonstrate various data aspects
in a dashboard may introduce numerous possible conceptual and perceptual pitfalls.
For our final case study we demonstrate the ability of our approach to assist in resolv-
ing the complexities of creating a semantically consistent COVID-19 dashboard. We
demonstrate an overview of this workflow in Figure B.8.

The initial layout as shown in the central part of Figure B.8 shows six charts. The
first chart column shows COVID-19 deaths grouped by age, where the top bar chart
represents total deaths and the bottom streamgraph indicates deaths over time. The
second column displays COVID-19 cases that are again grouped by age, with the top
bar chart indicating summed cases while the below streamgraph shows case load over
time. The rightmost column shows two pie charts grouped by gender, where the top
chart shows cases while the bottom shows deaths. Our goal is create a dashboard using
multiple chart types that clearly presents the COVID-19 cases and deaths distributed
by age group and gender in Germany.

As in the prior case examples we have a number of different routes through which
we can traverse the semantic space, as indicated in map in the lower middle of Fig-
ure B.8. In this case study we describe the navy blue indicated route, beginning with
the confuser that our system identifies between the pie chart showing COVID-19 deaths
and the COVID-19 cases over time chart (Figure B.8.1). This is a confuser because the

B

B.6 Discussion & Limitations 113

female segment in the pie chart uses the same blue as for the color mapping in the chart
showing cases grouped by age over time. We perform the suggested differentiate op-
eration to clarify the different groupings by changing the color mapping of genders to
a light green for males and pink for females. This increases consistency in semantic
space. We next resolve the hallucinator relation between the two pie charts by homog-
enizing the color mapping of both charts so the cases chart receives the same green
and pink color mapping to males and females, respectively, for increased consistency
in semantic space (Figure B.8.2).

Two additional hallucinators exist, one between the age-grouped COVID-19 cases
charts (Figure B.8.3) and the second between the age-grouped COVID-19 deaths charts
(Figure B.8.4). Each are classified as hallucinators because the chart data and group-
ings are identical but they do not share the same color mapping. We resolve the first
hallucinator between the two case charts with a homogenize operation that applies the
same continuous blue color mapping in the streamgraph to the bar chart. We resolve
the second hallucinator the same way for the deaths chart, by applying the continuous
red color mapping in the deaths over time streamgraph to the corresponding bar chart.
Each of these operations sequentially improves consistency in semantic space.

We may compact our dashboard visualization by resolving two multiples relations
that our system identifies. The first multiples relation exists between the two bar charts,
which we integrate into a single grouped row chart (Figure B.8.5). A second compact-
ing step in semantic space integrates the two streamgraphs in a mirroring operation to
resolve their multiples relation (Figure B.8.6). In both integration steps the system im-
plicitly homogenizes the data domains as well. The resulting COVID-19 dashboard in
the right of Figure B.8 is a much more compact and semantically consistent visualiza-
tion with the aid of our approach.

B.6 Discussion & Limitations

We realized our method by implementing and embedding it into the Visception visual
authoring system [56]. For specifying rules, it is necessary to be able to retrieve detailed
information about each channel mapping, as well as the chart type and grouping. We
believe this information should be accessible in most frameworks. Specifying chart op-
erations requires more knowledge about the underlying architecture and programming
interface. For instance, our framework had support for nesting visualizations, which
was highly useful for generating grouped and stacked charts. For example, two bar
charts grouped the same, showing two different quantitative attributes can be grouped
into a stacked bar chart, where the outer bar is grouped the same, and the inner group-
ing is one bar for each of the two attributes. In principle, however, we believe that
our approach is applicable to a variety of different visualization systems, even if the
specifics of how individual operations are implemented will differ. At present, our pro-
totype only supports a limited number of common chart types: line charts, bar charts,
pie charts, scatter plots, and streamgraphs. For addressing a wider range of charts, we
believe that a framework for unifying the reasoning about these charts could allow for
a more generally applicable realization of semantic snapping. We believe that frame-
works that allow for expressing and modifying charts on a general level are ideal for
implementing our semantic snapping concept.

B

114 Semantic Snapping

At present, a canvas is limited to views of a single tabular dataset. For dealing
with more advanced multi-table setups, our approach would have to be built on top
of an additional abstraction over these different data topologies. Such an abstraction
layer would enable a more general implementation of semantic snapping that could
also facilitate the incorporation of other dataset types such as network data. Likewise,
techniques such as interactive linking & brushing and crossfiltering are frequently used
in multi-view visualizations but currently not explicitly supported in our framework,
which also represents an interesting challenge for future research.

The layout of the views is an important factor in an overall design, which is cur-
rently not addressed in our approach but is definitely worthy of further investigation.
It would be possible to specify more advanced relations by incorporating the spatial
arrangement of individual views. For instance, if two views are sufficiently spatially
separated, a confuser could be classified as less severe. Likewise, taking into account
spatial arrangement could extend the space of operations as, for example, a differenti-
ate operation could move views further apart or even add graphical separators or visual
groupings. This is an important direction for future research. Related to this, since cur-
rently the number of possible operations is sufficiently small, we do not perform any
explicit sorting. However, a larger number of possibilities would necessitate to incor-
porate an appropriate mechanism for prioritizing operations. We believe that such a
sorting of potential revisions using for example Qu & Hullman’s effectiveness preser-
vation score [79] would be useful when there are many potential solutions.

While the operations of our method alter the design and resolve potential inconsis-
tencies, it would provide more flexibility and design freedom if they were customizable.
For example, the mirror operation could be parameterized by letting the user decide the
spacing between the views and the placement of the labels. A general assumption of
our method is that the existing views are already well-designed individually. However,
when a view is placed into a multi-view design, the aspect ratio and size will change.
Keeping font sizes and other styles consistent across a design becomes tedious. While
our operations do combine views and optimize design, they do not at present allow for
a final fine-tuning of, for instance, font sizes. Such global controls are not a part of our
method, but would be highly helpful in any multi-view visualization design process.

Finally, our method is based on general principles in the sense of Kindlmann and
Scheidegger [54] and thus does not take into account an explicit task specification.
While this focus was deliberate, since meaningfully characterizing user tasks is a sig-
nificant challenge of its own that would also explode the design space, we still believe
that exploring how different types of general user tasks could guide the evaluation of re-
lationships and the presentation of operations is an important topic for future research.

B.7 Conclusion

We presented semantic snapping, a semi-automatic guided method that allows for in-
crementally refining multi-view visualizations. While previous work on multi-view
visualizations has given us guidelines and constraints for reasoning about and improv-
ing visualizations, we further operationalized these concepts by (1) specifying relations
between views precisely, and (2) proposing how each relation can be resolved by an op-
eration. Each operation is a step in the semantic space with two axes representing the

B

B.7 Conclusion 115

consistency and compactness. Furthermore, we presented a prototype implementation
of our method, where users can perform operations to gradually refine a multi-view
visualization design. In the future, believe that our approach to specifying relations
and corresponding operations can be applied to more elements of multi-view visualiza-
tions such as their layout. Furthermore, many additional rules and guidelines for single
visualizations could be adapted to or extended for multi-view visualizations.

The research presented in this paper was supported by the MetaVis project
(#250133) funded by the Research Council of Norway as well as the VIDI project
(#813558) funded by the the Trond Mohn Foundation in Bergen, Norway.

B

116 Semantic Snapping

Semantic Snapping for Guided Multi-View Visualization Design:
Supplementary Material

Consistency

C
om

pa
ct

ne
ss

1 2

3

Semantic Space

O: Homogenize

O: Homogenize

1

2

3

1b

R: Hallucinator
R: Multiples

1a

2b

2c

R: Multiples2a

Should the aggregates avg, avg,
avg of column horsepower: have
the same data domain?

Yes

Figure B.8: Case study workflow demonstrating semantic snapping to resolve a hallucinator
and a multiples relation in a canvas plotting three variables from the cars dataset against av-
erage horsepower. We resolve these relations via two homogenization operations, one on the
color channel and the other on the data domain placed on the y-axis for the two rightmost
views.

This is an additional case study that could not be included in the paper due to space
restrictions. In this example, we illustrate the resolution of a hallucinator and multiples
relation using the cars dataset. We begin with the three bar chart views arrayed on the canvas
in Figure B.8.1. These views plot average horsepower against: number of cylinders (leftmost
view), wheel drive (middle view) and aspiration (rightmost view). Each of these views
constitute different pairwise groupings that share the same data domain plotted to the y-axis
(average horsepower). This describes a multiples relation. We furthermore see that all three
views use the color channel to visualize the average price, but with different data domains.
This constitutes a hallucinator (Figure B.8.1a). We resolve this hallucinator with a

B

B.7 Conclusion 117

homogenize operation that changes the visual output to green (Figure B.8.1b), in addition to
homogenizing the data domains. This moves us from pos. 1 at the origin of our semantic
space a more consistent position in the space (pos. 2).
With consistent color outputs across all views (Figure B.8.2), as a consequence of the
multiples relation between the three views, we are able to homogenize the data domains of the
three views (Figure B.8.2a-b). view (Figure B.8.2a-b). Our model offers a sanity check for
any explicit operation to homogenize the data domain (Figure B.8.2c). This is to help avoid a
potential backwards operation in semantic space, i.e., create a less compact and/or less
consistent visualization), that unreasonably distorts the data. However, the user ultimately
validates whether the views they wish to combine are semantically the same. The option to
undo their move is always available. With successful homogenization of the y-axis data
domains in all views we have arrived to pos. 3 in semantic space. Our resulting visualization
is both more semantically consistent and compact than it began (Figure B.8.3).

B

CC
Paper C

Content-Driven Layout for Visualization Design

Yngve Sekse Kristiansen, Laura Garrison, Stefan Bruckner

University of Bergen, Norway

Abstract

Multi-view visualizations are typically presented in a grid layout with elements positioned
according to their bounding rectangles. These rectangles often contain unused white space. In
cases where Tufte’s Shrink Principle can be applied to reduce non-data-ink without impairing
the communication of information, unused white space can be utilized for the placement of
other elements. This is often done in manually “hand-crafted” layouts by designers. However,
upon changes to individual elements, this design process has to be repeated. To reduce non-
data-ink and repetitive manual design, we contribute a method for automatically turning a
grid layout into a content-driven layout, where elements are positioned with respect to their
contents. Existing approaches have explored the use of a force simulation in conjunction with
proxy geometries to simplify collision handling for irregular shapes. Such customized force
directed layouts are usually unstable, and often require additional constraints to run properly.
In addition, proxy geometries become less accurate and effective with more irregular shapes.
To solve these shortcomings, we contribute an approach for identifying central elements in
an original grid layout in order to set up corresponding attractive forces. Furthermore, we
utilize an image-based approach for collision detection and avoidance that works accurately
for highly irregular shapes. We demonstrate the utility of our approach with three case studies.

C.1 Introduction

Data-driven infographics and dashboards often have a small set of elements positioned by an
underlying grid layout, which considers only bounding rectangles of individual elements. In
this paper, we propose means for compacting the layout of designs that have (1) unused white
space between contents of grid cells and (2) one or a few identifiable central elements. By
Tufte’s Shrink Principle [102], many data graphics can have their data-density increased and
be reduced in area without loss of information or readability. One way to achieve this is to
reduce the amount of non-data-ink, which occurs frequently in designs with underlying grid

In Proceedings of the International Symposium on Visual Information Communication and Interaction

C

120 Content-Driven Layout for Visualization Design

layouts. This process is frequently performed manually. However, manual designs become
tedious to re-design upon changes to individual elements due to manual revisions or changes
in the underlying data.

Consider a user placing a set of visual elements onto a canvas in order to create a layout.
A concrete example of this would be a user designing a Tableau [97] dashboard by arranging
elements into a grid layout, as shown in Figure C.1a. In this layout, each element is contained
by a bounding rectangle. Within these bounding rectangles, there may be much unused white
space. However, a grid layout does not allow the user to utilize this space efficiently.

One alternative to a grid layout is a force-directed layout [33], which allows for flexible
control of distances between elements. However, force-directed layouts are often designed
to work with only simple shapes such as circles, and rarely support irregular shapes where
other representations are necessary. Ali et al. [5] utilized a force layout wherein irregular
shapes are represented by convex hulls. Such proxy geometries are approximations to com-
plex, fine-grained details, and become less accurate with more irregular and complex shapes.
For example, the marks of the scatter plot on the right in Figure C.4 are difficult to describe
geometrically without losing some fidelity. As another example, consider the lower concave
region of the lungs in Figure C.2. A convex hull would fail to properly capture this region.
In this paper, we aim to enable the use of this white space by employing a force-directed lay-
out that reflects the original grid layout topology by attracting peripheral elements towards
central elements, avoiding content-to-content collisions with high precision, even for highly
irregular shapes. We present a scheme for better preserving the original grid layout topology,
which applies attractive forces only towards a small set of inferred central elements. We use
a novel image-based approach for content-to-content repulsion that enables fine-grained con-
trol of distances between elements. With three case studies, we demonstrate how our approach
successfully turns grid layouts with a high degree of unused white space into content-driven
layouts. These layouts effectively utilize white space around irregular shapes, and are able to
better capture the aesthetic qualities of a manual design.

C.2 Related Work

The primary goal of a multi-view visualization layout is to position elements so that they
convey information to the user as intended. Such layouts are typically designed manually,
often with the help of a grid [31]. Grid-based layouts are frequently used in visualization
software programs such as Tableau [97] and for other multi-view visualizations. Since then,
many more sophisticated techniques for multi-view visualizations have been introduced. Our
work is a continuation of this, as we provide a more content-driven alternative to the typically
used grid layout.

Multi-view visualization layout techniques have been explored by several researchers.
For example, Javed et al. [49] defined the space of composite visualization in terms of four
operators: juxtaposition, superimposition, overloading, and nesting. Chen et al. [20] explored
360 visualizations and identified a set of composition and configuration patterns in multi-view
visualizations. Also on the topic of dashboard design, Sarikaya et al. [84] contributed a design
space across several dimensions, including functional design, purpose, audience, and data
semantics. They further pointed out that dashboards are currently venturing into the realm of
infographics. In this work, we aim to enable for such a transition from a traditional dashboard
towards a more “infographics”-like dashboard by transforming its layout into a more compact
“hand-crafted” version.

Automated layout techniques typically fall into one of two categories: machine learning

C

C.2 Related Work 121

techniques, and constraint based techniques [62]. These techniques often extend such quality
measures to encompass higher-level concepts. Jahanian et al. [48] quantified concepts from art
and aesthetics into a system for automatically designing magazine covers. This knowledge was
further leveraged to create a recommendation system [47] for generating magazine covers by
adhering to high-level intuitive cues such as "formal" or "sporty". In their layout process, they
identify non-salient image segments of the main image, and use them as potential regions to
place secondary content. Yang et al. [115] proposed a system to automatically generate layouts
by leveraging expert-designed, topic-dependent templates and a computational framework for
integrating and harmonizing high-level aesthetics and low-level image features. Moritz et al.
[72] proposed Draco, a system for formalizing such design knowledge and guidelines, making
them accessible to non-experts through a constraint-based Answer Set Programming language.

Techniques for synthesis and optimization of grid layouts are useful since they operate
on an already widely used layout technique. Jacobs et al. [45] introduced an approach for
adapting grid-based magazine layouts to different screen sizes. Xu et al. [114] proposed an in-
terface for beautifying layouts by visualizing and editing relationships with sketching gestures.
Sketchplorer [100] integrates sketch-based design with a real-time layout optimizer. It auto-
matically infers the designer’s task and searches for local and global improvements. Dayama
et al. [24] presented a method for interactively transferring a layout of a single user interface
design to another user interface. Li et al. [59] proposed the use of LayoutGAN, a genera-
tive adversarial network, to synthesize, model, and edit geometric relations between different
2D elements. Schrier et al. [89] presented a system for assembling documents from differ-
ent sources into a single grid-based design, which automatically adapts to different viewing
conditions and content selections.

Space usage optimization has been explored in the context of multi-view visualization as
well as windowing management. A foundational idea behind such optimization is to reduce
the loss of white space. Analogous to this idea, Albano and Sapuppo [4] explored heuristic
methods for allocating irregular 2D shapes with a minimal amount of white space for reducing
loss of physical fabric while cutting. Similarly, Bouganis and Shanahan [15] used computer
vision and AI techniques to minimize white space in layouts with varying shapes on both reg-
ular and irregular surfaces. Ishak and Feiner [44] devised a technique dubbed content-aware
layout to position several windows by taking their contents into account. Steinberger et al.
[96] presented a dynamic window management technique which identifies coherent informa-
tion that is then used as a basis for moving and scaling windows. Haraty et al. [38] proposed
a genetic algorithm for optimizing multi-window layouts for specific tasks. Ishak and Feiner
[44] devised a technique dubbed content-aware layout to position several windows by taking
their contents into account. Zheng et al. [117] introduced an approach to generate high qual-
ity, content-aware magazine graphic designs by using a deep learning generative model trained
on a large magazine-layout dataset. Effective screen space usage is becoming even more rel-
evant with a myriad of different devices and screen sizes being used to dissect data. Kim et
al. [51] characterized different responsive visualization strategies by analyzing 378 pairs of
large screen and small screen visualizations. They identify implications for existing works as
well as future work. Andrews and Smrdel [6] applied the principles of responsive web design,
and leveraged these principles to make commonly used visualizations responsive. Motivated
by interviewing journalists, and analyzing 231 responsive news visualizations, Hoffswell et al.
[41] proposed a prototype system for previewing and editing multiple visualization versions
simultaneously. While such works focus on optimization of space usage, they typically con-
sider elements only by their bounding rectangles, rather than contents. Our work shares the
goal of efficient use of space, but achieves it for cases where it is more desirable to have a

C

122 Content-Driven Layout for Visualization Design

Understanding Breathing Patterns
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut

12-15
breaths/min

Average breathing rate of adults
under normal conditions

B

C

A

F

G

H
I
J

D

E

INITIAL GRID CORRESPONDING HIERARCHY ADJACENCY GRAPH INFERRED CENTRAL NODES
& CORRESPONDING FORCES

Attractive forces

A

DC E F G HIB J

Grid Layout & Hierarchy

Infer
Adjacencies

A

B

C

D

E
J

H

G

F

I

J

A

B

C

D

E H

G

F

I

1

2

3 4 5

a b c d

Figure C.1: Here we see the steps for generating a set of attractive forces from an initial grid
layout (a), which corresponds to a grid layout hierarchy (b). From this hierarchy (b) we infer all
adjacent elements in the grid layout (a) using Algorithm 1, and store them as a neighborhood
graph (c). This neighborhood graph is again used to determine which elements are central
in the original layout (a). In this case, elements B and I are inferred to be central nodes (d).
This results in attractive forces directed only towards B and I, indicated by the direction of the
arrows along the links (d).

compact layout that adheres precisely to the contents of its elements.
The common force-directed layout approach [33] is often used alone or in conjunction

with other constraints to achieve highly flexible graph layouts. Force-directed layouts have a
wider range of applications, including visualizing biological pathways [34], improving Euler
diagrams [69], rendering Lombardi-style graphs [21], targeting network spatialization [46],
and rapidly visualizing large networks [16]. Dengler et al. [25] used a generalization of a
simple force-layout to generate diagram layouts satisfying geometric and aesthetic/perceptual
constraints. We are inspired by the work of Ali et al. [5] who proposed a tool for creating
blueprints to integrate interactive illustrations into one layout. However, their approach repre-
sented elements by their convex hulls, limiting its ability to tightly arrange irregular shapes (for
example, the concave region of the lungs in Figure C.2). Our method uses an image-based,
rather than geometric, approach to deriving Euclidean content-to-content distances between
elements, which does not suffer from these drawbacks.

C.3 Content-Driven Layout

Layouts used in the context of multi-view visualizations typically position elements by their
bounding rectangles, rather than contents. In a content-driven layout, elements are positioned
by their contents, i.e., pixels that are not white space. A content-driven layout can make
better use of previously unused white space, resulting in a potentially more visually pleasant,
compact and “hand-crafted” appearance as seen in Figure C.3. The main goal of our method
is to enable the automatic transformation of a grid layout to a content-driven layout. This
is achieved by generating a force-directed layout, with forces derived from the original grid
layout.

C.3.1 Terminology

A grid layout (Figure C.1a) is a layout where a rectangular space is recursively subdivided
horizontally or vertically. A single element contains visual content and white space, while
content excludes white space. Each grid layout corresponds to a hierarchy as seen in Fig-
ure C.1b. If several elements in the grid layout share the same strip of space, they have the

C

C.3 Content-Driven Layout 123

same parent node in the corresponding hierarchy, where the left-to-right order of nodes cor-
respond to the order in which elements appear in the grid layout. In this hierarchy, non-leaf
nodes have a flow that controls the order and direction in which their children are placed,
which is either vertical left-to-right, or horizontal top-to-bottom. Consider how elements C, D,
E in Figure C.1a correspond to nodes in the hierarchy in Figure C.1b. These three nodes also
share the same parent (node 3 in Figure C.1b), which flows vertically top-to-bottom, while A
is a child of the root node (node 1 in Figure C.1b), which also flows vertically top-to-bottom.
Adjacency relationships between elements in the grid layout are referred to as the topology of
the layout. For example, in Figure C.1a we see that elements C, D, and E are to the left, and
appear in order from top to bottom, while B, I, and J are in the middle, and element A is on the
top. This topology can be concisely expressed by an extracted adjacency graph (Figure C.1c),
where each element in the grid layout is represented as a node positioned at its original center
of gravity, and each adjacency between two elements in the grid layout is represented as a link
between two nodes.

C.3.2 Overview

On a high level, our method follows a pipeline composed of the following steps. First, we de-
rive adjacency relationships from the underlying tree structure of the grid layout (Figure C.1b)
and store them as an adjacency graph (Figure C.1c). This adjacency graph is then used to iden-
tify a set of nodes (Figure C.1d), which correspond to the visually most central elements in
the original layout (Figure C.1a, elements B and I). Attractive forces are set up such that in a
force simulation, elements are pulled only towards these central elements. Image-based repul-
sive forces between each distinct pair of elements are used for content-to-content repulsion.
With these attractive and repulsive forces, a force simulation is started, where each element
is initially placed according to its original grid layout position. The execution of the force
simulation transforms the grid layout into a content-driven layout.

C.3.3 Attractive Forces

Content-to-content attraction ensures that elements gravitate towards each other. Visually, it is
easy to see that a grid layout has a small set of central elements. To represent the topology of
the original grid layout, we model attractive forces so that they are all directed towards these
central elements. To achieve this, we derive a graph from the original grid layout where each
link represents the adjacency relationship between two elements in the grid layout. From this
adjacency graph, we infer a minimal set of central nodes. Finally, we apply attractive forces
that pull elements towards central elements.

We define the adjacency graph by a conditional that determines adjacency between two
elements a and b. Throughout this paragraph, we refer to lines in Algorithm 1, and consider
the nodes B and F in Figure C.1 as examples of a and b, respectively. Adjacency between
non-sibling nodes is determined by first finding their LCA (lowest common ancestor) in the
grid hierarchy (line 10). Next, we extract the paths patha and pathb between the nodes and
their LCA (line 11), which would correspond to the paths consisting of node 4 between B
and 2, and 5 between F and 2. Now, the goal is to find out if there are no other leaf nodes
between the two possibly adjacent nodes. Thus, we check how patha and pathb are positioned
in relation to each other by using the subroutine pos (line 1). This subroutine checks the order
of appearance of nodes with respect to the flow of the LCA. For example, since the flow of the
LCA (node 2) is horizontal, and there are no other horizontally flowing nodes between B and

C

124 Content-Driven Layout for Visualization Design

Algorithm 1 Inferring adjacency graph
1: procedure POS(path)
2: ancestorFlow = flow of first node in path
3: path' = path without its two first nodes
4: nl p = nodes in path' with parent. f low = ancestorFlow
5: return 'only' if nl p.length = 0
6: return ' f irst ' if ∀n ∈ nl p : index(n) = 0
7: return 'last ' if ∀n ∈ nl p : index(n) = |siblings(n)|
8: return 'middle'
9: procedure ISADJACENT(a, b)

10: if a and b are siblings: return true
11: l← LCA(a,b) ▷ Lowest common ancestor
12: a', b' = ancestors of a and b that are children of l
13: if index(a') > index(b'): return isAdjacent(b, a)
14: if index(b') - index(a') > 1: return f alse
15: patha, pathb = path from l to a, and l to b
16: return pos(patha)∈{'last ', 'only'}∧pos(pathb)∈{' f irst ', 'only'}

2, or F and 2, pos will in both cases return 'only'. If there was a horizontally flowing node on
the path from F to 2, F would have to be the horizontally first or only leaf node to be in contact
with B. Conversely, B would have to be the horizontally last or only leaf node in the case of a
horizontally flowing node between B and 2. Thus, two nodes are adjacent if pos evaluates to
'last ' or 'only' for patha, and ' f irst ' or 'only' for pathb as seen on line 16.

Algorithm 2 Identifying central elements
1: procedure FINDCENTRALNODES(N)
2: C← [] ▷ central nodes
3: V ← [] ▷ visited nodes
4: until all nodes in N are in C or V , do:
5: for each node n : n ∈ N, do:
6: n.a← number of unvisited neighbors of n
7: n.b← number of neighbors connected to unvisited node
8: N '←V if |V | ̸= /0, otherwise N
9: amax← max({n.a |n ∈ N '}) ▷ Greatest a

10: A←{n |n ∈V ∧n.a = amax } ▷ Nodes with greatest a
11: bmax← max({n.b |n ∈ A}) ▷ Greatest b
12: for each node n ∈ A where n.b = bmax, do:
13: add n to C ▷ n is central
14: add all neighbors of n to V ▷ neighbors of n are visited

From the adjacency graph, we can now determine the most central elements. For every
node n in the adjacency graph, we count how many of its immediate neighbors are unvisited,
and store this number as n.a as seen on line 6 of Algorithm 2. Furthermore, we count how
many of its neighboring nodes are connected to an unvisited node, and store this number as
n.b (Algorithm 2, line 7). We then identify the highest a-value among all non-central nodes
(Algorithm 2, line 9), and find all nodes with this a-value (Algorithm 2, line 10). From these
nodes, we find the highest b-value, as shown on line 11 of Algorithm 2. Finally, we select

C

C.3 Content-Driven Layout 125

only the nodes with the highest identified a-value, and associated highest b-value (Algorithm
2, line 12), which are tagged as central (Algorithm 2, line 13). Furthermore, the neighbors of
each central node are tagged as visited on line 14 of Algorithm 2.

Based on the computed central nodes, we can now apply attractive forces drawing corre-
sponding peripheral elements towards central elements, and each central element towards all
other central elements. In other words, no elements are attracted towards peripheral elements,
and bidirectional attractive forces are set up between all central elements. The directionality
of a force attracting element B towards element A is defined as the normalized vector going
from the center of gravity of B, to the center of gravity of A. We use standard spring forces
based on Hooke’s law with a constant strength.

C.3.4 Repulsive Forces

Content-to-content repulsion prevents elements from overlapping. The first step towards
achieving this is to consider each element by its content rather than its bounding rectangle.
In existing approaches, irregular shapes are often simplified to geometric shapes, which are
then used to compute content-to-content distances and overlaps. For example, Ali et al. [5]
used convex hulls to compute content-to-content distances and collisions. Such geometry-
based approaches become less reliable and more difficult to handle with irregular shapes. For
example, consider the image of a lung in Figure C.2. Using a convex hull around this fails to
represent the gap between the two lungs. Hence, we use an image-based approach to detect
and avoid overlapping contents. We achieve accurate content-to-content distances by utilizing
the Euclidean distance transform [12], which we compute for every element by using Mei-
jster’s algorithm [68]. The distance transform of an element A is denoted as dtA, and encodes
in every pixel the Euclidean distance to the nearest content pixel. We compute the distance
transform from a binary image of the original content, where 1 is content and 0 is white space.

Repulsive forces are applied between all elements. These forces are active only if elements
have overlapping bounding rectangles. If two elements A and B have intersecting bounding
rectangles at the region A∩ B, they may also have overlapping contents. To compute the
distance between the contents of the two views, we first consider the distance transforms of
A and B, dtA and dtB. Then, we clip out the region A∩B from the distance transforms of A
and B, giving us the images dt ′A and dt ′B. These clipped distance transforms are then summed
together pixel by pixel, giving the content-to-content distance at the smallest pixel as follows:

dAB = min(dt ′A +dt ′B) (C.1)

The repulsive force pushes the content of element B away from the content of element A.
The directionality of repulsion is determined by the gradient of the distance transform. To
compute the directionality, we consider the distance transform gradient of A, at the region of
intersection A∩B, denoted ∇dt ′A. The directionality of repulsion is the normalized sum of
vectors from ∇dt ′A.

In practice, it is often desirable to have a certain margin M around the content of an ele-
ment. This requires correspondingly enlarging the bounding rectangle of an element to avoid
issues when the content is close to its borders. The repulsive strength between two elements
A and B is then computed as:

ρAB =
1

max(dAB−M,θ)
(C.2)

where θ acts as a lower threshold for the denominator of the expression, avoiding near infinite
strengths as dAB−M approaches zero.

C

126 Content-Driven Layout for Visualization Design

C.4 Implementation

We implemented our approach by using Vue.js and TypeScript for rendering the layout ele-
ments, and D3.js [14] for running the force simulation. The attractive and repulsive forces are
implemented as custom forces in D3’s force-directed layout implementation. Layout elements
are reactively linked to underlying layout objects, which are updated in each step of the layout
simulation.

The underlying grid layout is specified as a recursive JSON object corresponding to the
underlying tree structure outlined in Section C.3. Non-leaf nodes have the following proper-
ties: (1) flow, which is either vertical or horizontal, and children, a list of children. Leaf nodes
have a source property which may be an image link, or a Vega-Lite [87] specification string
which enables the easy integration of a rich set of different types of visualizations.

The most expensive part of our algorithm is finding the content-to-content repulsion be-
tween nodes. More specifically, adding together the distance transforms at the region of inter-
section, and finding the smallest pixel is most time-consuming. We currently use a straight-
forward CPU implementation using Javascript’s Float64Array to represent the underlying dis-
tance transforms, so a GPU-based approach could lead to significant time reductions. The per-
formance of this operation is also highly dependent on the resolution of the distance transform.
To illustrate this impact, we present the performance of our algorithm with two different dis-
tance transform resolutions: (1) max(width,height) = 50, and (2) max(width,height) = 200.
We generated the lungs example in Figure C.2 using the Mozilla Firefox browser, on a ma-
chine with 32GB RAM and a Intel Core i7-7700K CPU @ 4.20GHz. With both resolutions,
convergence was reached after 35 iterations of the force layout, which took 905 and 1207 mil-
liseconds for resolutions 50 and 200, respectively. On average, each iteration took 25.8 mil-
liseconds with the resolution of 200, and 18 milliseconds with a resolution of 50 (in both cases,
this includes rendering time). In our experiments, we found that even when using resolutions
significantly lower than rendering resolutions, impacts on the final results were negligible with
large-scale structure shapes such as the lungs in Figure C.2. However, a higher resolution was
required to capture finer aspects such as very small bubbles in the bubble plot in Figure C.4.

C.5 Case Studies

In this section we illustrate the value of our approach in three case studies in collaboration
with a designer who is a coauthor of this paper. Each case study begins with the project brief
that a designer or data journalist would typically receive at the beginning of a project. We then
discuss the ideation phase, where the designer develops layout concepts, and the subsequent
challenges faced in typical production tools such as Tableau or Adobe Illustrator. We then
compare the functional capabilities of these typical production tools against our content-driven
layout algorithm. For all case studies we use styling from the Vega cook book repository. A
demonstration video illustrating our approach and these case studies is available at: https:
//tinyurl.com/y652kt6n.

C.5.1 Respiration Patterns

We begin with a case study illustrating a relatively simple white space optimization challenge
that is not possible to achieve in standard visualization tools, such as in Tableau. The design

https://github.com/aezarebski/vegacookbook

https://tinyurl.com/y652kt6n
https://tinyurl.com/y652kt6n

C

C.5 Case Studies 127

ARTIST’S CONCEPT CHART COMPONENTS

FINAL LAYOUT

Understanding Breathing Patterns
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut

12-15
breaths/min

Average breathing rate of adults
under normal conditions

Figure C.2: Using our content-driven layout approach, the artist is able to achieve a composi-
tion where the six respiratory patterns are arrayed around the margins of the lungs.

C

128 Content-Driven Layout for Visualization Design

brief for this scenario is to design an infographic describing six common breathing patterns
as seen in the output of a ventilator. This is intended for medical staff to use as a study aid,
with an engaging vector graphic of the lungs and additional text describing the normal rate of
respiration. The lungs are intended as the center piece, with the six respiration patterns arrayed
around this central graphic.

Per the design brief, the designer places the lung anatomy centrally and as the largest
graphical element in the figure. To add visual interest to the infographic, they array the six
respiration patterns in a slightly out-of-grid layout to fan around the outer borders of the lungs,
as per the artist’s concept sketch in Figure C.2. Additionally, the text stating the average
normal breathing rate (12–15 breaths per minute) per the brief also requires visual emphasis,
and the gap where the heart would normally rest in the white space between the lungs is
an ideal position for its optimization of white space and visual interest. However, such a
placement is impossible to implement in Tableau, which uses a grid-based design ignoring
white space around the graphical assets, per Figure C.2, top right. These adjustments would
typically need to be implemented in Adobe Illustrator or similar software. While creating such
a layout is reasonably low-effort once, placement and alignment becomes tedious with multiple
design iterations, particularly if design elements change. For example, an interactive version
of this infographic may require the average respiration rate text to change with selection of
particular respiration patterns. This requires minor layout tweaks in each iteration that rapidly
become tedious for the designer. Our method enables the graphs of respiration patterns to align
smoothly along the margins of the lungs in the central graphic. It furthermore is able to move
the average respiration text into the white space between the lungs to add visual interest and
emphasis to this information.

C.5.2 Wind Turbine Distribution in the US

This case study illustrates the value of our method when creating layouts that use the white
space surrounding highly irregular-shaped assets. In this instance, the designer has been tasked
with creating a visually-engaging poster infographic explaining the distribution of wind tur-
bines across the US. The brief requires hand-drawn vector graphics of wind turbines alongside
charts describing wind turbine geographic distribution and power capacity, as well as charts
describing changes in power capacity and dominant manufacturers from 2017 to 2021.

Wind turbines are large, irregularly-shaped objects, with large amounts of white space
between the turbine blades of the central, large wind turbine that anchors the other design
elements of the infographic. To add visual interest and economize white space, the designer
wishes to nest the data visualizations in these white spaces, as in the artist’s concept shown
in Figure C.3. Such use of white space normally requires manual layout creation in Adobe
Illustrator or similar artistic programs. The closest achievable layout in a grid-based system is
illustrated in the top right image of Figure C.3. There are several instances of inefficient use
of white space in this layout. First, the title of the infographic cannot efficiently nest between
the blades of the central turbine. Second, the width of the bounding box around the central
turbine is dictated by the span of the turbine blades, where there is insufficient space on either
side to draw the bar charts and companion smaller wind turbine graphical elements. These
four elements are not able to nest below the turbine blades and thereby make more efficient
use of the white space in the lower half of the infographic. The canvas must be taller to
accommodate the two smaller windmills and bar charts, which are pushed below the central
wind turbine element.

Our content-driven approach generates more compact layouts for positioning irregularly-

C

C.5 Case Studies 129

ARTIST’S CONCEPT CHART COMPONENTS

FINAL LAYOUT

Gridded layout
does not make
optimal use of
white space
created by wind
turbine blades
and requires a
much taller
canvas.

Our approach
makes more
efficient use of
white space and
can compress to
a more normal
portrait-style
aspect ratio,
which is a better
match original
artist concept.

Figure C.3: Our content-driven layout enables plots and text elements to array around the
large, central wind turbine to optimize use of white space and more closely match the artist’s
intended layout.

C

130 Content-Driven Layout for Visualization Design

Wealthier countries are healthier countries.

Wealthier countries are healthier countries. Wealthier countries are healthier countries.

Wealthier countries are healthier countries.

Wealthier countries are healthier countries.

Wealthier countries are healthier countries.

ARTIST’S CONCEPT

CHART COMPONENTS

FINAL LAYOUT(S)
Efficient use of white space
with changes in country map.

Inefficient white space use
with changes in country map.

Efficient white space use
with changes in plot scale.

Inefficient white space use
with changes in plot scale.

Figure C.4: Concept for visualization of health vs. wealth of countries of the world. While a
grid layout is unable to place a country map element near the data points, our content-driven
approach places the map element in an optimal position. This concept shows efficient use of
white space in (1) changing elements and (2) changing white space.

shaped graphics with a graphically-interesting use of white space underneath the large wind
turbine blades. The infographic title, “American Wind Energy” tucks into the space immedi-
ately above the central wind turbine, which enables enlargement of the wind turbine distribu-
tion map. The two bar charts describing wind turbine capacity and manufacturer for the years
2017 and 2018, with their companion graphical wind turbine elements, can move close to ei-
ther side of the turbine pole, which enables the entire canvas to take on the standard portrait
aspect ratio dimensions that the designer originally intended.

C.5.3 Health vs. Wealth in the Countries of the World

Our final case study considers the optimization of white space under two changing conditions
in a visualization: (1) changing the accompanying image element in a visualization and (2)
changing the scales of the axes of a plot that leads to a different distribution of white space.
This design brief is for a visualization plotting the health against wealth of 187 countries of the
world, from the GapMinder dataset. To add visual interest, the brief requests each data point
to include a map of the country.

https://www.gapminder.org/data/

C

C.6 Discussion and Limitations 131

This design is centered around a bubble plot that describes the correlation of countries’
health and wealth. Each bubble represents a country, and its size is encoded to the population
of that country. Hovering over a bubble reveals a tooltip of information for that country, as well
as a map of the country. The designer furthermore wishes to have this map element appear as
close to the associated country bubble as possible, without obscuring surrounding data points
in the bubble plot. A complication to this brief is that the plot scales can be adjusted to zoom in
to different regions of the plot, which requires a different layout for the map element depending
on the changing white space.

The designer’s concept is shown in the top of Figure C.4 for inspection of China and Japan,
and a subsequent alteration of the plot scale to look closer at only the healthiest and wealthiest
countries, including Japan. The design in these three instances, first with the change of image
element and second with the change of plot scale and subsequent bubble positioning, takes
advantage of the extensive white space around the bubble plot to nest maps closely around
the data elements. Unfortunately, this layout is not achievable in a standard grid-based layout
system, which is illustrated in the middle row of Figure C.4. Here, the maps must be much
smaller and further away from their associated data point. This is an inefficient use of white
space, and forces the viewer to look back and forth between associated elements.

Our content-driven approach enables the country map element to slide in near the data point
of interest to reduce white space in the visualization, and to reduce the number of places the
user must focus their attention on in the visualization. In the first scenario at the bottom left two
images of Figure C.4, the differently-shaped country maps of China and Japan each are able
to position efficiently in the white space in the lower right of the bubble plot. When adjusting
the plot scales to show only the healthiest and wealthiest countries (bottom rightmost), our
algorithm positions the Japan map element more optimally in the upper right of the bubble
plot. This case study thus demonstrates our algorithm’s capabilities both in conditions of (1)
changing elements and (2) changing white space.

C.6 Discussion and Limitations

As demonstrated in the presented case studies, our approach is capable of transform a grid
layout that makes inefficient use of white space into a content-driven layout that can closely
mirror the artist’s original design concept and more efficiently use the white space in the visu-
alization. Our approach is targeted at scenarios with relatively few elements (i.e., tens), which
is typical for common infographics, and hence is not well-suited for the layout of large data
collections [32].

While the method presented in this paper primarily focuses on turning grid layouts into
content-driven layouts, it could greatly benefit from being combined with existing works and
approaches. Our force-directed layout setup could be used on other initial layouts with irregu-
lar shapes, as long as it is possible to infer the layout topology as a graph. Our prototype starts
from a fully-specified grid layout and specific screen size, which introduces some instability
to the layout. However, using interaction to incrementally place or move shapes could help
tweak and overcome such instabilities.

Although we found that our approach delivers good results even with distance transforms
computed at lower resolutions, there may be instances where this fails to take into account
details that may be relevant for the final layout. In such cases, an additional pre-processing
step could be used (e.g., a low-pass filter) to make sure that all important features are captured.
Alternatively, or additionally, the input to the distance transform could be adapted according
to the semantics of individual components of the visualization, e.g., by giving higher priority

C

132 Content-Driven Layout for Visualization Design

to data-encoding pixels compared to legends or other decorations. Such extensions could be
easily integrated into our approach by automatically applying different styles for layout and
display purposes to the Vega-Lite specification. Similarly, object detection techniques could be
leveraged to identify salient regions of images or charts and separate it from the background,
before generating the distance transform. Furthermore, image-space edits could be done to
the image before the distance transform is computed. For example, drawing a line on the
right side of an image before computing the distance field would create a hard boundary on
the right side of that image in the layout simulation, and such manipulations could be used as
additional alignment guides. Other types of interactions could also be integrated in order to
further increase the degree of design freedom. While currently our approach is based on an
automatic identification of central elements, this initial selection could be modified by the user
in order to provide a more tailored user experience as discussed by Tyagi et al. [103].

While our current prototype implementation already allows for basic interactions when
supplied with corresponding Vega-Lite specifications, we do not yet support fully dynamic
content (e.g., interactive filtering or cross-linking between multiple views), partly due to the
fact that it has proven difficult to implement event translation consistently across different
browsers. However, we plan to extend this functionality in the future. We plan to evaluate
our approach through a user study or a larger set of existing grid layouts and element types.
Here, in particular, it will be interesting to study differences related to the design expertise of
individual users.

C.7 Conclusion

In this paper we presented an approach for turning an existing grid layout into a content-driven
layout, wherein elements are positioned by their contents rather than their proxy bounding ge-
ometries. Our method parses and transforms the original grid layout topology into a smaller
graph which informs the selective application of attractive forces and leverages distance trans-
forms to repulse elements based on their content to enable better space utilization. Further-
more, we presented three case studies demonstrating the effectiveness and versatility of our
algorithm. In the future, our approach to repulsing irregular shapes can be applied to other use
cases, in combination with other image-based techniques.

C

Bibliography

[1] https://www.kaggle.com/hesh97/titanicdataset-traincsv, 2018. Accessed:
2019-11-07.

[2] AHLBERG, C., AND WISTRAND, E. IVEE: An environment for automatic cre-
ation of dynamic queries applications. In Proc. ACM CHI (1995), pp. 15–16, doi:
10.1145/223355.223381.

[3] AIKEN, A., CHEN, J., STONEBRAKER, M., AND WOODRUFF, A. Tioga-2: a direct
manipulation database visualization environment. In Proc. International Conference on
Data Engineering (1996), pp. 208–217, doi: 10.1109/ICDE.1996.492109.

[4] ALBANO, A., AND SAPUPPO, G. Optimal allocation of two-dimensional irregular
shapes using heuristic search methods. IEEE Trans. Systems, Man, and Cybernetics 10,
5 (1980), 242–248, doi: 10.1109/TSMC.1980.4308483.

[5] ALI, K., HARTMANN, K., FUCHS, G., AND SCHUMANN, H. Adaptive layout for
interactive documents. In Proc. International Symposium on Smart Graphics (2008),
pp. 247–254, doi: 10.1007/978-3-540-85412-824.

[6] ANDREWS, K., AND SMRDEL, A. Responsive data visualisation. In Proc. EuroVis
(Posters) (2017), pp. 113–115, doi: 10.2312/eurp.20171182.

[7] ANGELINI, M., SANTUCCI, G., SCHUMANN, H., AND SCHULZ, H.-J. A review and
characterization of progressive visual analytics. Informatics 5 (2018), doi: 10.3390/in-
formatics5030031.

[8] BAUDEL, T., AND BROEKSEMA, B. Capturing the design space of sequential space-
filling layouts. IEEE Trans. Visualization and Computer Graphics 18, 12 (2012), 2593–
2602, doi: 10.1109/TVCG.2012.205.

[9] BEHRISCH, M., BLUMENSCHEIN, M., KIM, N. W., SHAO, L., EL-ASSADY, M.,
FUCHS, J., SEEBACHER, D., DIEHL, A., BRANDES, U., PFISTER, H., ET AL. Quality
metrics for information visualization. Computer Graphics Forum 37, 3 (2018), 625–
662, doi: doi.org/10.1111/cgf.13446.

[10] BERTIN, J. Semiology of Graphics. University of Wisconsin Press, 1983.

[11] BOLTE, F., AND BRUCKNER, S. Measures in visualization space. In Foundations of
Data Visualization. Springer, 2020, pp. 39–59, doi: 10.1007/978-3-030-34444-33.

[12] BORGEFORS, G. Distance transformations in digital images. Computer Vision, Graph-
ics, and Image Processing 34, 3 (1986), 344–371, doi: 10.1016/S0734-189X(86)80047-
0.

https://www.kaggle.com/hesh97/titanicdataset-traincsv
http://dx.doi.org/10.1145/223355.223381
http://dx.doi.org/10.1145/223355.223381
http://dx.doi.org/10.1109/ICDE.1996.492109
http://dx.doi.org/10.1109/TSMC.1980.4308483
http://dx.doi.org/10.1007/978-3-540-85412-8_24
http://dx.doi.org/10.2312/eurp.20171182
http://dx.doi.org/10.3390/informatics5030031
http://dx.doi.org/10.3390/informatics5030031
http://dx.doi.org/10.1109/TVCG.2012.205
http://dx.doi.org/doi.org/10.1111/cgf.13446
http://dx.doi.org/10.1007/978-3-030-34444-3_3
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1016/S0734-189X(86)80047-0

C

134 BIBLIOGRAPHY

[13] BOSTOCK, M., AND HEER, J. Protovis: A graphical toolkit for visualization.
IEEE Trans. Visualization and Computer Graphics 15, 6 (2009), 1121–1128, doi:
10.1109/TVCG.2009.174.

[14] BOSTOCK, M., OGIEVETSKY, V., AND HEER, J. D3: data-driven documents.
IEEE Trans. Computer Graphics and Visualization 17, 12 (2011), 2301–2309, doi:
10.1109/TVCG.2011.185.

[15] BOUGANIS, A., AND SHANAHAN, M. A vision-based intelligent system for packing
2-d irregular shapes. IEEE Trans. Automation Science and Engineering 4, 3 (2007),
382–394, doi: 10.1109/TASE.2006.887158.

[16] BRINKMANN, G. G., RIETVELD, K. F., AND TAKES, F. W. Exploiting gpus for fast
force-directed visualization of large-scale networks. In Proc. International Conference
on Parallel Processing (2017), pp. 382–391, doi: 10.1109/ICPP.2017.47.

[17] BRULS, M., HUIZING, K., AND WIJK, J. J. V. Squarified treemaps. In Data visual-
ization 2000. Springer, 2000, pp. 33–42, doi: 10.1007/978-3-7091-6783-04.

[18] CANTU, A., GRISVARD, O., DUVAL, T., AND COPPIN, G. Identifying the relation-
ships between the visualization context and representation components to enable rec-
ommendations for designing new visualizations. In Proc. International Conference on
Information Visualisation (2017), pp. 20–28, doi: 10.1109/iV.2017.55.

[19] CASSELMAN, B. https://github.com/fivethirtyeight/guns-data, 2016. Ac-
cessed: 2019-11-07.

[20] CHEN, X., ZENG, W., LIN, Y., AL-MANEEA, H. M., ROBERTS, J., AND

CHANG, R. Composition and configuration patterns in multiple-view visualizations.
IEEE Trans. Visualization and Computer Graphics 27, 2 (2021), 1514–1524, doi:
10.1109/TVCG.2020.3030338.

[21] CHERNOBELSKIY, R., CUNNINGHAM, K. I., GOODRICH, M. T., KOBOUROV, S. G.,
AND TROTT, L. Force-directed lombardi-style graph drawing. In Proc. International
Symposium on Graph Drawing (2011), pp. 320–331, doi: 10.1007/978-3-642-25878-
731.

[22] CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, ex-
perimentation, and application to the development of graphical methods. Jour-
nal of the American Statistical Association 79, 387 (1984), 531–554, doi:
10.1080/01621459.1984.10478080.

[23] CORRELL, M., LI, M., KINDLMANN, G., AND SCHEIDEGGER, C. Looks good to
me: Visualizations as sanity checks. IEEE Trans. Visualization and Computer Graphics
25, 1 (2018), 830–839, doi: 10.1109/TVCG.2018.2864907.

[24] DAYAMA, N. R., SANTALA, S., BRÜCKNER, L., TODI, K., DU, J., AND

OULASVIRTA, A. Interactive layout transfer. In Proc. International Conference on
Intelligent User Interfaces (2021), pp. 70–80, doi: 10.1145/3397481.3450652.

[25] DENGLER, E., FRIEDELL, M., AND MARKS, J. Constraint-driven diagram lay-
out. In Proc. IEEE Symposium on Visual Languages (1993), pp. 330–335, doi:
10.1109/VL.1993.269619.

http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TASE.2006.887158
http://dx.doi.org/10.1109/ICPP.2017.47
http://dx.doi.org/10.1007/978-3-7091-6783-0_4
http://dx.doi.org/10.1109/iV.2017.55
https://github.com/fivethirtyeight/guns-data
http://dx.doi.org/10.1109/TVCG.2020.3030338
http://dx.doi.org/10.1109/TVCG.2020.3030338
http://dx.doi.org/10.1007/978-3-642-25878-7_31
http://dx.doi.org/10.1007/978-3-642-25878-7_31
http://dx.doi.org/10.1080/01621459.1984.10478080
http://dx.doi.org/10.1080/01621459.1984.10478080
http://dx.doi.org/10.1109/TVCG.2018.2864907
http://dx.doi.org/10.1145/3397481.3450652
http://dx.doi.org/10.1109/VL.1993.269619
http://dx.doi.org/10.1109/VL.1993.269619

C

BIBLIOGRAPHY 135

[26] DIBIA, V., AND DEMIRALP, Ç. Data2vis: Automatic generation of data visualizations
using sequence-to-sequence recurrent neural networks. IEEE Computer Graphics and
Applications 39, 5 (2019), 33–46, doi: 10.1109/MCG.2019.2924636.

[27] DIEHL, A., ABDUL-RAHMAN, A., EL-ASSADY, M., BACH, B., KEIM, D. A., AND

CHEN, M. Visguides: A forum for discussing visualization guidelines. In Proc. EuroVis
(Short Papers) (2018), pp. 61–65, doi: 10.2312/eurovisshort.20181079.

[28] ELMQVIST, N., DO, T.-N., GOODELL, H., HENRY, N., AND FEKETE, J.-D. ZAME:
Interactive large-scale graph visualization. In Proc. IEEE PacificVis (2008), pp. 215–
222, doi: 10.1109/PACIFICVIS.2008.4475479.

[29] ELSHEHALY, M., RANDELL, R., BREHMER, M., MCVEY, L., ALVARADO, N.,
GALE, C. P., AND RUDDLE, R. A. Qualdash: Adaptable generation of visualisa-
tion dashboards for healthcare quality improvement. IEEE Trans. Visualization and
Computer Graphics 27, 2 (2020), 689–699, doi: 10.1109/TVCG.2020.3030424.

[30] ENGELKE, U., ABDUL-RAHMAN, A., AND CHEN, M. Visupply: A supply-chain pro-
cess model for visualization guidelines. In Proc. International Symposium on Big Data
Visual and Immersive Analytics (2018), pp. 1–9, doi: 10.1109/BDVA.2018.8534029.

[31] FEINER, S. A grid-based approach to automating display layout. In Proc. Graphics
Interface (1988), pp. 192–197.

[32] FREY, S. Optimizing grid layouts for level-of-detail exploration of large data collec-
tions. Computer Graphics Forum 41 (2022), doi: 10.1111/cgf.14537.

[33] FRUCHTERMAN, T. M., AND REINGOLD, E. M. Graph drawing by force-directed
placement. Software: Practice and Experience 21, 11 (1991), 1129–1164, doi:
10.1002/spe.4380211102.

[34] GENC, B., AND DOGRUSOZ, U. A constrained, force-directed layout algorithm for
biological pathways. In Proc. International Symposium on Graph Drawing (2003),
pp. 314–319, doi: 10.1007/978-3-540-24595-729.

[35] GLEICHER, M., ALBERS, D., WALKER, R., JUSUFI, I., HANSEN, C. D., AND

ROBERTS, J. C. Visual comparison for information visualization. Information Vi-
sualization 10, 4 (2011), 289–309, doi: 10.1177/1473871611416549.

[36] GRAMMEL, L., TORY, M., AND STOREY, M.-A. How information visualization
novices construct visualizations. IEEE Trans. Visualization and Computer Graphics
16, 6 (2010), 943–952, doi: 10.1109/TVCG.2010.164.

[37] GRATZL, S., GEHLENBORG, N., LEX, A., PFISTER, H., AND STREIT, M. Domino:
Extracting, comparing, and manipulating subsets across multiple tabular datasets.
IEEE Trans. Visualization and Computer Graphics 20, 12 (2014), 2023–2032, doi:
10.1109/TVCG.2014.2346260.

[38] HARATY, M., NOBARANY, S., DIPAOLA, S., AND FISHER, B. D. Adwil: adap-
tive windows layout manager. In Proc. ACM CHI. 2009, pp. 4177–4182, doi:
10.1145/1520340.1520636.

http://dx.doi.org/10.1109/MCG.2019.2924636
http://dx.doi.org/10.2312/eurovisshort.20181079
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475479
http://dx.doi.org/10.1109/TVCG.2020.3030424
http://dx.doi.org/10.1109/BDVA.2018.8534029
http://dx.doi.org/10.1111/cgf.14537
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1007/978-3-540-24595-7_29
http://dx.doi.org/10.1177/1473871611416549
http://dx.doi.org/10.1109/TVCG.2010.164
http://dx.doi.org/10.1109/TVCG.2014.2346260
http://dx.doi.org/10.1109/TVCG.2014.2346260
http://dx.doi.org/10.1145/1520340.1520636
http://dx.doi.org/10.1145/1520340.1520636

C

136 BIBLIOGRAPHY

[39] HEER, J., CARD, S. K., AND LANDAY, J. A. Prefuse: A toolkit for inter-
active information visualization. In Proc. ACM CHI (2005), pp. 421–430, doi:
10.1145/1054972.1055031.

[40] HENRY, N., AND FEKETE, J.-D. NodeTrix: a hybrid visualization of social net-
works. IEEE Trans. Visualization and Computer Graphics 13, 6 (2007), 1302–1309,
doi: 10.1109/TVCG.2007.70582.

[41] HOFFSWELL, J., LI, W., AND LIU, Z. Techniques for flexible responsive visualization
design. In Proc. ACM CHI (2020), pp. 1–13, doi: 10.1145/3313831.3376777.

[42] HORAK, T., MATHISEN, A., KLOKMOSE, C. N., DACHSELT, R., AND ELMQVIST,
N. Vistribute: Distributing interactive visualizations in dynamic multi-device setups. In
Proc. ACM CHI (2019), pp. 1–13, doi: 10.1145/3290605.3300846.

[43] HUDSON, S. E. Adaptive semantic snaping—a technique for semantic feedback at the
lexical level. In Proc. ACM CHI (1990), pp. 65–70, doi: 10.1145/97243.97253.

[44] ISHAK, E. W., AND FEINER, S. Content-aware layout. In Proc. ACM CHI (2007),
pp. 2459—-2464, doi: 10.1145/1240866.1241024.

[45] JACOBS, C., LI, W., SCHRIER, E., BARGERON, D., AND SALESIN, D. Adap-
tive grid-based document layout. ACM Trans. Graphics 22, 3 (2003), 838–847, doi:
10.1145/882262.882353.

[46] JACOMY, M., VENTURINI, T., HEYMANN, S., AND BASTIAN, M. Forceatlas2, a
continuous graph layout algorithm for handy network visualization designed for the
gephi software. PloS one 9, 6 (2014), e98679, doi: 10.1371/journal.pone.0098679.

[47] JAHANIAN, A., LIU, J., LIN, Q., TRETTER, D., O’BRIEN-STRAIN, E., LEE, S. C.,
LYONS, N., AND ALLEBACH, J. Recommendation system for automatic design of
magazine covers. In Proc. International Conference on Intelligent User Interfaces
(2013), pp. 95–106, doi: 10.1145/2449396.2449411.

[48] JAHANIAN, A., LIU, J., TRETTER, D. R., LIN, Q., DAMERA-VENKATA, N.,
O’BRIEN-STRAIN, E., LEE, S., FAN, J., AND ALLEBACH, J. P. Automatic design
of magazine covers. In Proc. Imaging and Printing in a Web 2.0 World III (2012),
pp. 114–121, doi: 10.1117/12.914596.

[49] JAVED, W., AND ELMQVIST, N. Exploring the design space of composite visualization.
In Proc. IEEE PacificVis (2012), pp. 1–8, doi: 10.1109/PacificVis.2012.6183556.

[50] KANDEL, S., HEER, J., PLAISANT, C., KENNEDY, J., VAN HAM, F., RICHE, N. H.,
WEAVER, C., LEE, B., BRODBECK, D., AND BUONO, P. Research directions in data
wrangling: Visualizations and transformations for usable and credible data. Information
Visualization 10, 4 (2011), 271–288, doi: 10.1177/1473871611415994.

[51] KIM, H., MORITZ, D., AND HULLMAN, J. Design patterns and trade-offs in respon-
sive visualization for communication. Computer Graphics Forum 40, 3 (2021), 459–
470, doi: 10.1111/cgf.14321.

http://dx.doi.org/10.1145/1054972.1055031
http://dx.doi.org/10.1145/1054972.1055031
http://dx.doi.org/10.1109/TVCG.2007.70582
http://dx.doi.org/10.1145/3313831.3376777
http://dx.doi.org/10.1145/3290605.3300846
http://dx.doi.org/10.1145/97243.97253
http://dx.doi.org/10.1145/1240866.1241024
http://dx.doi.org/10.1145/882262.882353
http://dx.doi.org/10.1145/882262.882353
http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1145/2449396.2449411
http://dx.doi.org/10.1117/12.914596
http://dx.doi.org/10.1109/PacificVis.2012.6183556
http://dx.doi.org/10.1177/1473871611415994
http://dx.doi.org/10.1111/cgf.14321

C

BIBLIOGRAPHY 137

[52] KIM, N. W., SCHWEICKART, E., LIU, Z., DONTCHEVA, M., LI, W., POPOVIC, J.,
AND PFISTER, H. Data-driven guides: Supporting expressive design for information
graphics. IEEE Trans. Visualization and Computer Graphics 23, 1 (2017), 491–500,
doi: 10.1109/TVCG.2016.2598620.

[53] KIM, T. http://tany.kim/best-bookshelf, 2019. Accessed: 2019-11-07.

[54] KINDLMANN, G., AND SCHEIDEGGER, C. An algebraic process for visualization
design. IEEE Trans. Visualization and Computer Graphics 20, 12 (2014), 2181–2190,
doi: 10.1109/TVCG.2014.2346325.

[55] KOSSLYN, S. M. Understanding charts and graphs. Applied cognitive psychology 3, 3
(1989), 185–225, doi: 10.1002/acp.2350030302.

[56] KRISTIANSEN, Y. S., AND BRUCKNER, S. Visception: An interactive visual frame-
work for nested visualization design. Computers & Graphics 92 (2020), 13–27, doi:
10.1016/j.cag.2020.08.007.

[57] LEBLANC, J., WARD, M. O., AND WITTELS, N. Exploring n-dimensional databases.
In Proc. IEEE Visualization (1990), pp. 230–237, doi: 10.1109/VISUAL.1990.146386.

[58] LI, G., TIAN, M., XU, Q., MCGUFFIN, M. J., AND YUAN, X. Gotree: A grammar of
tree visualizations. In Proc. ACM CHI (2020), p. 1–13, doi: 10.1145/3313831.3376297.

[59] LI, J., YANG, J., HERTZMANN, A., ZHANG, J., AND XU, T. Layoutgan: Generat-
ing graphic layouts with wireframe discriminators. arXiv preprint arXiv:1901.06767
abs/1901.06767 (2019), doi: 10.48550/arXiv.1901.06767.

[60] LIN, H., MORITZ, D., AND HEER, J. Dziban: Balancing agency & automation in
visualization design via anchored recommendations. In Proc. ACM CHI (2020), pp. 1–
12, doi: 10.1145/3313831.3376880.

[61] LIU, Z., THOMPSON, J., WILSON, A., DONTCHEVA, M., DELOREY, J., GRIGG, S.,
KERR, B., AND STASKO, J. Data illustrator: Augmenting vector design tools with
lazy data binding for expressive visualization authoring. In Proc. ACM CHI (2018),
pp. 123:1–123:13, doi: 10.1145/3173574.3173697.

[62] LOK, S., AND FEINER, S. A survey of automated layout techniques for information
presentations. Proc. International Symposium on Smart Graphics 2001 (2001), 61–68.

[63] LOORAK, M. H., PERIN, C., COLLINS, C., AND CARPENDALE, S. Exploring
the possibilities of embedding heterogeneous data attributes in familiar visualiza-
tions. IEEE Trans. Visualization and Computer Graphics 23, 1 (2017), 581–590, doi:
10.1109/TVCG.2016.2598586.

[64] MACKINLAY, J. Automating the design of graphical presentations of relational infor-
mation. ACM Trans. Graphics 5, 2 (1986), 110–141, doi: 10.1145/22949.22950.

[65] MACKINLAY, J., HANRAHAN, P., AND STOLTE, C. Show me: Automatic presentation
for visual analysis. IEEE Trans. Visualization and Computer Graphics 13, 6 (2007),
1137–1144, doi: 10.1109/TVCG.2007.70594.

http://dx.doi.org/10.1109/TVCG.2016.2598620
http://tany.kim/best-bookshelf
http://dx.doi.org/10.1109/TVCG.2014.2346325
http://dx.doi.org/10.1002/acp.2350030302
http://dx.doi.org/10.1016/j.cag.2020.08.007
http://dx.doi.org/10.1016/j.cag.2020.08.007
http://dx.doi.org/10.1109/VISUAL.1990.146386
http://dx.doi.org/10.1145/3313831.3376297
http://dx.doi.org/10.48550/arXiv.1901.06767
http://dx.doi.org/10.1145/3313831.3376880
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1109/TVCG.2016.2598586
http://dx.doi.org/10.1109/TVCG.2016.2598586
http://dx.doi.org/10.1145/22949.22950
http://dx.doi.org/10.1109/TVCG.2007.70594

C

138 BIBLIOGRAPHY

[66] MCNUTT, A. What are table cartograms good for anyway? an algebraic analysis.
Computer Graphics Forum 40, 3 (2021), 61–73, doi: 10.1111/cgf.14289.

[67] MCNUTT, A., AND KINDLMANN, G. Linting for visualization: Towards a practical
automated visualization guidance system. In Proc. IEEE VIS Workshop on the Cre-
ation, Curation, Critique and Conditioning of Principles and Guidelines in Visualiza-
tion (2018).

[68] MEIJSTER, A., ROERDINK, J. B., AND HESSELINK, W. H. A general algorithm for
computing distance transforms in linear time. In Proc. Mathematical Morphology and
its Applications to Image and Signal Processing. 2002, pp. 331–340, doi: 10.1007/0-
306-47025-X36.

[69] MICALLEF, L., AND RODGERS, P. eulerforce: Force-directed layout for euler di-
agrams. Journal of Visual Languages & Computing 25, 6 (2014), 924–934, doi:
10.1016/j.jvlc.2014.09.002.

[70] MIKE BOSTOCK, SHAN CARTER, M. E. At the national conventions, the words they
used, 2012. Accessed: 2019-11-07, https://archive.nytimes.com/www.nytimes.
com/interactive/2012/09/06/us/politics/convention-word-counts.html.

[71] MINARD, C.-J. Carte figurative des pertes successives en hommes de l’armée francais
dans la campagne de russe.

[72] MORITZ, D., WANG, C., NELSON, G., LIN, H., SMITH, A. M., HOWE, B., AND

HEER, J. Formalizing visualization design knowledge as constraints: Actionable and
extensible models in draco. IEEE Trans. Visualization and Computer Graphics 25, 1
(2019), 438–448, doi: 10.1109/TVCG.2018.2865240.

[73] MUNZNER, T., AND MAGUIRE, E. Visualization Analysis and Design. CRC Press,
2015, doi: 10.1201/b17511.

[74] NACENTA, M. A., AND MÉNDEZ, G. G. iVoLVER: A visual language for construct-
ing visualizations from in-the-wild data. In Proc. ACM International Conference on
Interactive Surfaces and Spaces (2017), pp. 438–441, doi: 10.1145/3132272.3132299.

[75] ONDOV, B., JARDINE, N., ELMQVIST, N., AND FRANCONERI, S. Face to face: Eval-
uating visual comparison. IEEE Trans. Visualization and Computer Graphics 25, 1
(2019), 861–871, doi: 10.1109/TVCG.2018.2864884.

[76] PARK, D., DRUCKER, S. M., FERNANDEZ, R., AND ELMQVIST, N. Atom: A gram-
mar for unit visualizations. IEEE Trans. Visualization and Computer Graphics 24, 12
(2018), 3032–3043, doi: 10.1109/TVCG.2017.2785807.

[77] PARKER, G., FRANCK, G., AND WARE, C. Visualization of large nested graphs in 3D:
Navigation and interaction. Journal of Visual Languages and Computing 9, 3 (1998),
299–317, doi: 10.1006/jvlc.1998.0086.

[78] PATTISON, T., VERNIK, R., AND PHILLIPS, M. Information visualisation using com-
posable layouts and visual sets. In Proc. Asia-Pacific Symposium on Information Visu-
alisation (2001), pp. 1––10, https://dl.acm.org/doi/10.5555/564040.564041.

http://dx.doi.org/10.1111/cgf.14289
http://dx.doi.org/10.1007/0-306-47025-X_36
http://dx.doi.org/10.1007/0-306-47025-X_36
http://dx.doi.org/10.1016/j.jvlc.2014.09.002
http://dx.doi.org/10.1016/j.jvlc.2014.09.002
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
http://dx.doi.org/10.1109/TVCG.2018.2865240
http://dx.doi.org/10.1201/b17511
http://dx.doi.org/10.1145/3132272.3132299
http://dx.doi.org/10.1109/TVCG.2018.2864884
http://dx.doi.org/10.1109/TVCG.2017.2785807
http://dx.doi.org/10.1006/jvlc.1998.0086
https://dl.acm.org/doi/10.5555/564040.564041

C

BIBLIOGRAPHY 139

[79] QU, Z., AND HULLMAN, J. Evaluating visualization sets: Trade-offs between lo-
cal effectiveness and global consistency. In Proc. BELIV (2016), pp. 44–52, doi:
10.1145/2993901.2993910.

[80] QU, Z., AND HULLMAN, J. Keeping multiple views consistent: Constraints, valida-
tions, and exceptions in visualization authoring. IEEE Trans. Visualization and Com-
puter Graphics 24, 1 (2018), 468–477, doi: 10.1109/TVCG.2017.2744198.

[81] REN, D., HÖLLERER, T., AND YUAN, X. iVisDesigner: Expressive interactive design
of information visualizations. IEEE Trans. Visualization and Computer Graphics 20,
12 (2014), 2092–2101, doi: 10.1109/TVCG.2014.2346291.

[82] REN, D., LEE, B., AND BREHMER, M. Charticulator: Interactive construction of
bespoke chart layouts. IEEE Trans. Visualization and Computer Graphics 25, 1 (2019),
789–799, doi: 10.1109/TVCG.2018.2865158.

[83] ROTH, S. F., LUCAS, P., SENN, J. A., GOMBERG, C. C., BURKS, M. B., STROF-
FOLINO, P. J., KOLOJECHICK, A. J., AND DUNMIRE, C. Visage: a user interface
environment for exploring information. In Proc. IEEE InfoVis (1996), pp. 3–12, doi:
10.1109/INFVIS.1996.559210.

[84] SARIKAYA, A., CORRELL, M., BARTRAM, L., TORY, M., AND FISHER, D. What do
we talk about when we talk about dashboards? IEEE Trans. Visualization and Computer
Graphics 25, 1 (2018), 682–692, doi: 10.1109/TVCG.2018.2864903.

[85] SATYANARAYAN, A., AND HEER, J. Lyra: An interactive visualization design envi-
ronment. Computer Graphics Forum 33, 3 (2014), 351–360, doi: 10.1111/cgf.12391.

[86] SATYANARAYAN, A., LEE, B., REN, D., HEER, J., STASKO, J., THOMPSON, J.,
BREHMER, M., AND LIU, Z. Critical reflections on visualization authoring sys-
tems. IEEE Trans. Visualization and Computer Graphics 26, 1 (2020), 461–471, doi:
10.1109/TVCG.2019.2934281.

[87] SATYANARAYAN, A., MORITZ, D., WONGSUPHASAWAT, K., AND HEER, J. Vega-
lite: A grammar of interactive graphics. IEEE Trans. Visualization and Computer
Graphics 23, 1 (2017), 341–350, doi: 10.1109/TVCG.2016.2599030.

[88] SCHLIMMER, J. https://archive.ics.uci.edu/ml/datasets/mushroom, 1987.
Accessed: 2019-11-07.

[89] SCHRIER, E., DONTCHEVA, M., JACOBS, C., WADE, G., AND SALESIN, D. Adaptive
layout for dynamically aggregated documents. In Proc. International Conference on
Intelligent User Interfaces (2008), pp. 99–108, doi: 10.1145/1378773.1378787.

[90] SCHULZ, H., AKBAR, Z., AND MAURER, F. A generative layout approach for rooted
tree drawings. In Proc. IEEE PacificVis (2013), pp. 225–232, doi: 10.1109/Paci-
ficVis.2013.6596149.

[91] SCHULZ, H., HADLAK, S., AND SCHUMANN, H. The design space of implicit hier-
archy visualization: A survey. IEEE Trans. Visualization and Computer Graphics 17, 4
(2011), 393–411, doi: 10.1109/TVCG.2010.79.

http://dx.doi.org/10.1145/2993901.2993910
http://dx.doi.org/10.1145/2993901.2993910
http://dx.doi.org/10.1109/TVCG.2017.2744198
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2018.2865158
http://dx.doi.org/10.1109/INFVIS.1996.559210
http://dx.doi.org/10.1109/INFVIS.1996.559210
http://dx.doi.org/10.1109/TVCG.2018.2864903
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1109/TVCG.2019.2934281
http://dx.doi.org/10.1109/TVCG.2019.2934281
http://dx.doi.org/10.1109/TVCG.2016.2599030
https://archive.ics.uci.edu/ml/datasets/mushroom
http://dx.doi.org/10.1145/1378773.1378787
http://dx.doi.org/10.1109/PacificVis.2013.6596149
http://dx.doi.org/10.1109/PacificVis.2013.6596149
http://dx.doi.org/10.1109/TVCG.2010.79

C

140 BIBLIOGRAPHY

[92] SCHULZ, H.-J., AND HADLAK, S. Preset-based generation and exploration of visu-
alization designs. Journal of Visual Languages And Computing 31 (2015), 9–29, doi:
10.1016/j.jvlc.2015.09.004.

[93] SHADOAN, R., AND WEAVER, C. Visual analysis of higher-order conjunctive relation-
ships in multidimensional data using a hypergraph query system. IEEE Trans. Visualiza-
tion and Computer Graphics 19, 12 (2013), 2070–2079, doi: 10.1109/TVCG.2013.220.

[94] SILVA, S., MADEIRA, J., AND SANTOS, B. S. There is more to color scales than meets
the eye: a review on the use of color in visualization. In Proc. International Conference
on Information Visualization (2007), pp. 943–950, doi: 10.1109/IV.2007.113.

[95] SLINGSBY, A., DYKES, J., AND WOOD, J. Configuring hierarchical layouts to address
research questions. IEEE Trans. Visualization and Computer Graphics 15, 6 (2009),
977–984, doi: 10.1109/TVCG.2009.128.

[96] STEINBERGER, M., WALDNER, M., AND SCHMALSTIEG, D. Interactive self-
organizing windows. Computer Graphics Forum 31, 2pt3 (2012), 621–630, doi:
10.1111/j.1467-8659.2012.03041.x.

[97] STOLTE, C., TANG, D., AND HANRAHAN, P. Polaris: a system for query, analysis,
and visualization of multidimensional databases. Communications of the ACM 51, 11
(2008), 75–84, doi: 10.1109/2945.981851.

[98] STÖRRLE, H. On the impact of layout quality to understanding uml diagrams: Diagram
type and expertise. In Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing (2012), pp. 49–56, doi: 10.1109/VLHCC.2012.6344480.

[99] SWEARNGIN, A., WANG, C., OLESON, A., FOGARTY, J., AND KO, A. J. Scout:
Rapid exploration of interface layout alternatives through high-level design constraints.
In Proc. ACM CHI (2020), pp. 1–13, doi: 10.1145/3313831.3376593.

[100] TODI, K., WEIR, D., AND OULASVIRTA, A. Sketchplore: Sketch and explore with a
layout optimiser. In Proc. ACM Conference on Designing Interactive Systems (2016),
pp. 543–555, doi: 10.1145/2901790.2901817.

[101] TUFTE, E. Envisioning Information. Graphics Press, 1990.

[102] TUFTE, E. R. The Visual Display of Quantitative Information. Graphics Press, 1986.

[103] TYAGI, A., ZHAO, J., PATEL, P., KHURANA, S., AND MUELLER, K. Infographics
wizard: Flexible infographics authoring and design exploration. Computer Graphics
Forum 41, 3 (2022), 121–132, doi: https://doi.org/10.1111/cgf.14527.

[104] VAN DEN ELZEN, S., AND VAN WIJK, J. J. Small multiples, large singles: A new
approach for visual data exploration. Computer Graphics Forum 32, 3 (2013), 191–
200, doi: 10.1111/cgf.12106.

[105] VUILLEMOT, R., AND BOY, J. Structuring visualization mock-ups at the graphical
level by dividing the display space. IEEE Trans. Visualization and Computer Graphics
24, 1 (2018), 424–434, doi: 10.1109/TVCG.2017.2743998.

http://dx.doi.org/10.1016/j.jvlc.2015.09.004
http://dx.doi.org/10.1016/j.jvlc.2015.09.004
http://dx.doi.org/10.1109/TVCG.2013.220
http://dx.doi.org/10.1109/IV.2007.113
http://dx.doi.org/10.1109/TVCG.2009.128
http://dx.doi.org/10.1111/j.1467-8659.2012.03041.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03041.x
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/VLHCC.2012.6344480
http://dx.doi.org/10.1145/3313831.3376593
http://dx.doi.org/10.1145/2901790.2901817
http://dx.doi.org/https://doi.org/10.1111/cgf.14527
http://dx.doi.org/10.1111/cgf.12106
http://dx.doi.org/10.1109/TVCG.2017.2743998

C

BIBLIOGRAPHY 141

[106] WANG, W., WANG, H., DAI, G., AND WANG, H. Visualization of large hi-
erarchical data by circle packing. In Proc. ACM CHI (2006), pp. 517–520, doi:
10.1145/1124772.1124851.

[107] WICKHAM, H., AND HOFMANN, H. Product plots. IEEE Trans. Visualization and
Computer Graphics 17, 12 (2011), 2223–2230, doi: 10.1109/TVCG.2011.227.

[108] WILKINSON, L. The Grammar of Graphics. Springer-Verlag New York, 2005, doi:
10.1007/0-387-28695-0.

[109] WILKINSON, L., ANAND, A., AND GROSSMAN, R. Graph-theoretic scagnostics.
In Proc. IEEE Symposium on Information Visualization (2005), pp. 157–164, doi:
10.1109/INFOVIS.2005.14.

[110] WONGSUPHASAWAT, K., MORITZ, D., ANAND, A., MACKINLAY, J., HOWE, B.,
AND HEER, J. Voyager: Exploratory analysis via faceted browsing of visualization
recommendations. IEEE Trans. Visualization and Computer Graphics 22, 1 (2015),
649–658, doi: 10.1109/TVCG.2015.2467191.

[111] WONGSUPHASAWAT, K., MORITZ, D., ANAND, A., MACKINLAY, J., HOWE, B.,
AND HEER, J. Towards a general-purpose query language for visualization recommen-
dation. In Proc. Workshop on Human-In-the-Loop Data Analytics (2016), pp. 4:1–4:6,
doi: 10.1145/2939502.2939506.

[112] WONGSUPHASAWAT, K., MORITZ, D., SATYANARAYAN, A., AND HEER, J. Vega: A
visualization grammar. https://vega.github.io/, 2013.

[113] WONGSUPHASAWAT, K., QU, Z., MORITZ, D., CHANG, R., OUK, F., ANAND, A.,
MACKINLAY, J., HOWE, B., AND HEER, J. Voyager 2: Augmenting visual analy-
sis with partial view specifications. In Proc. ACM CHI (2017), pp. 2648–2659, doi:
10.1145/3025453.3025768.

[114] XU, P., FU, H., IGARASHI, T., AND TAI, C.-L. Global beautification of layouts with
interactive ambiguity resolution. In Proc. ACM Symposium on User Interface Software
and Technology (2014), pp. 243–252, doi: 10.1145/2642918.2647398.

[115] YANG, X., MEI, T., XU, Y.-Q., RUI, Y., AND LI, S. Automatic generation of visual-
textual presentation layout. ACM Trans. Multimedia Computing, Communications, and
Applications 12, 2 (2016), 1–22, doi: 10.1145/2818709.

[116] ZGRAGGEN, E., ZELEZNIK, R., AND DRUCKER, S. M. PanoramicData: Data analysis
through pen touch. IEEE Trans. Visualization and Computer Graphics 20, 12 (2014),
2112–2121, doi: 10.1109/TVCG.2014.2346293.

[117] ZHENG, X., QIAO, X., CAO, Y., AND LAU, R. W. Content-aware generative mod-
eling of graphic design layouts. ACM Trans. Graphics 38, 4 (2019), 1–15, doi:
10.1145/3306346.3322971.

[118] ZHU, S., SUN, G., JIANG, Q., ZHA, M., AND LIANG, R. A survey on automatic
infographics and visualization recommendations. Visual Informatics 4, 3 (2020), 24–
40, doi: 10.1016/j.visinf.2020.07.002.

[119] ZHU, Y. Measuring effective data visualization. In Proc. International Symposium on
Visual Computing (2007), pp. 652–661, doi: /10.1007/978-3-540-76856-264.

http://dx.doi.org/10.1145/1124772.1124851
http://dx.doi.org/10.1145/1124772.1124851
http://dx.doi.org/10.1109/TVCG.2011.227
http://dx.doi.org/10.1007/0-387-28695-0
http://dx.doi.org/10.1007/0-387-28695-0
http://dx.doi.org/10.1109/INFOVIS.2005.14
http://dx.doi.org/10.1109/INFOVIS.2005.14
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1145/2939502.2939506
https://vega.github.io/
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/2642918.2647398
http://dx.doi.org/10.1145/2818709
http://dx.doi.org/10.1109/TVCG.2014.2346293
http://dx.doi.org/10.1145/3306346.3322971
http://dx.doi.org/10.1145/3306346.3322971
http://dx.doi.org/10.1016/j.visinf.2020.07.002
http://dx.doi.org//10.1007/978-3-540-76856-2_64

	Scientific Environment
	Acknowledgements
	Abstract
	Abstract in Norwegian
	List of Papers
	I Overview
	Introduction
	Problem Statement
	Scope and Contributions
	Thesis Structure

	State of the Art
	Visualization Specification
	Grammars and Toolkits
	Hierarchical Visualizations
	Visual Builders
	Visualization Recommendation Systems
	Evaluating Visualization Quality

	Multi-View Visualizations
	Layout Strategies
	Content-Aware Strategies
	Automatic and Semi-Automatic Strategies

	Contributions
	Nested Visualization Design for Non-Experts
	Nesting as a First-Class Operation
	The Visception Tree
	Flexible Data Mappings
	Visual Builder
	Results
	Discussion and Limitations

	Expert Visualization Design for Non-Experts
	Semantic Snapping
	Semantic Space
	Detecting Potential Problems as Relations
	Resolving Potential Problems with Operations
	Demonstration and Workflow
	Discussion and Limitations

	Artist Designs for Non-Artists
	Content-Driven Layout Pipeline
	Arranging with Attractive Forces
	Image-Based Repulsive Forces
	Case Studies
	Discussion and Limitations

	Conclusion and Future Work

	II Included papers
	Visception: An Interactive Visual Framework for Nested Visualization Design
	Introduction
	Related Work
	Formal Graphics Specifications
	Data Exploration and Visual Authoring
	Nested Visualization and Related Techniques

	The Visception Framework
	Charts and VC-channels
	Visception Tree

	Implementation and Visual Builder
	Implementation
	Visual Builder

	Results
	Discussion and Limitations
	Conclusion
	(Appendix) Overview of Charts and VC-channels

	Semantic Snapping for Guided Multi-View Visualization Design
	Introduction
	Related Work
	Semantic Snapping Model
	Semantic Space
	Algebraic Relations
	User Operations
	Snapping Algorithm

	Workflow & Implementation
	Workflow
	Implementation

	Case Studies
	2016 Election Results
	Nightingale Soldier Morbidity & Mortality in 1858
	COVID-19 in Germany

	Discussion & Limitations
	Conclusion

	Content-Driven Layout for Visualization Design
	Introduction
	Related Work
	Content-Driven Layout
	Terminology
	Overview
	Attractive Forces
	Repulsive Forces

	Implementation
	Case Studies
	Respiration Patterns
	Wind Turbine Distribution in the US
	Health vs. Wealth in the Countries of the World

	Discussion and Limitations
	Conclusion

	Bibliography

