
Visualization Space Exploration
Theoretical and Practical Viewpoints

Fabian Bolte

Dissertation for the degree of Philosophiae Doctor (PhD)

Supervised by Stefan Bruckner
Co-supervised by Noeska Natasja Smit

Department of Informatics
University of Bergen

July 2020

Scientific Environment

The work presented in this thesis was conducted as part of my PhD studies in the Visu-
alization Group at the Department of Informatics, University of Bergen. I have further
been enrolled in the ICT Research School at the Department of Informatics, University
of Bergen. My research was supported by the MetaVis project (#250133) funded by
the Research Council of Norway. Furthermore, parts of the research have been carried
out in collaboration with the Indie Lab at the Department of Computer & Information
Science & Engineering (CISE), University of Florida.

Acknowledgements

First of all, I want to thank my main supervisor Stefan Bruckner, who provided help and
advice even in the most time-critical scenarios. His guidance and mentoring influenced
my work more than anything else and I am grateful for his support and belief in me
when things did not seem to work out as expected. His skepticism towards common
knowledge, his specific knowledge about unknown phenomena, and his regular lame
jokes (or in his words: “brilliant and hilarious”) probably marked me for life.

I also want to thank my co-supervisor Noeska Smit, who always made time to listen
to problems and to provide generally good advice. Friday beers, coffee breaks, and
social get-togethers would not have been the same (or even existed) without her.

Special thanks go to Mahsan Nourani and Eric Ragan for providing the expertise to
evaluate my visualization method. Mahsan proved to be a constant source of motiva-
tion, listened to my complaints, and helped me get through the worst. She is the most
supportive and caring person I know and I am most grateful to have her by my side.

I want to thank Helwig Hauser for contributing his wide-ranging knowledge during
discussion sessions and for looking displeased when I arrived late for work or meetings.
I thank my office mate Yngve Kristiansen for arriving even later to work and meetings,
making me feel less bad about it. His coding experience improved my knowledge
in web development and code quality immensely. I want to thank Juraj Pálenik for
introducing me to the fine art of beer brewing, for taking me sailing, for a countless
number of interesting discussions, and for teaching me the “basics” of math. I want
to thank Thomas Trautner for his shared interest in beer and his expertise in writing
shader code. Without him, I might still be working on that. I thank Sergej Stoppel for
the best pizza ever, for organizing countless social events, and for being a role model in
coming early to work and handing in papers ahead of time (both of which I successfully
managed to avoid). I thank Laura Garrison for her motivation to go out and dance, for
bringing a living cuddly toy to work, and for her explanations of weird American habits
and language oddities. I want to thank all further and former VisGroup members: Eric
Mörth, Charoan Fan, Fourough Gharbalchi, Sherin Sugathan, Veronika Šoltészová, Jan
Byška, Katarína Furmanová, Åsmund Birkeland, Julius Parulek, Ivan Kolesar, Erlend
Hodneland, Andreas Lind, and Eduard Gröller, for making the time in Bergen one of
the best in my life.

Lastly, I want to thank my family for supporting me throughout this time and for
believing that I can reach whatever goal I set myself. My grandparents provided all
the mental and financial support for my unburdened education. I know they would be
proud of me. My family gave me, as my mum — and Goethe — would say, roots for
staying grounded and wings to fly and follow my dreams. I could not wish for more.

Abstract

Visualizations are graphical representations of data that have been used in a wide-
ranging field of applications to provide a quick overview over data-inherent informa-
tion. By taking advantage of human perceptual capabilities, visualizations help users
understand features and phenomena in data, gather meaningful insights, and drive de-
cision making processes. One of the main motivations in visualization research is to
find the best visual representation for a given dataset, user, and task. This challenge is
often solved in a subjective manner, where a visualization designer chooses graphical
representations, visual channels, and encodings that they believe are best suited for the
task at hand. Therefore, the effectiveness and reliability of the result largely varies with
the designer’s expertise. To make an objectively good design decision, the designer
needs to consider all possible visualization methods, or in our words: explore the vi-
sualization space. For that purpose, the advantages and disadvantages of individual
techniques can be highlighted through comparison methods based on quality metrics,
user studies, or theoretical models. Each of these methods can additionally target the
visual perception of representations, task-oriented and application-specific measures,
structure-oriented matters, or meta-perceptual processes.

In this thesis, we aim to establish a greater understanding of the interconnections be-
tween independently studied approaches for visualization evaluation by exploring the
visualization space from several different viewpoints. First, we take a theoretical ap-
proach to identify and classify previous work on the evaluation of visualization meth-
ods. We analyze theoretical models, user studies, and quality metrics, and combine
them in a unified structure to distinguish classes of task-oriented, perceptual, meta-
perceptual, and structure-oriented measures. We then describe the individual class
strengths and shortcomings and propose a direction to combine the separate efforts
into a bigger picture to advance the field of visualization research as a whole.

One instance where visualization exploration takes place in practice is during the
development of visualization algorithms. By writing code, adding features, and chang-
ing parameters, visualization developers expose a large number of representations in
visualization space. We developed a system that explicitly displays these individual
states to the user and allows for their exploration and comparison. Parameter changes
and their effect on all developed visualization states can be inspected to investigate their
impact on visual features. The system not only encourages visualization developers to
consider multiple representations when creating a visualization, but further allows for
comparisons on a more general level. The simultaneous display of source code changes
and visual changes in a meta visualization opens up a large branch of possible future
research. We made a first step towards a practical development environment that en-
courages visualization comparison during the development process and reasoning about
correlations of source code changes and their impact on the visual result.

vi Abstract

In our implementation, we display source code states via node-link diagrams of their
abstract syntax trees. Although this representation provides a clear outline of individ-
ual hierarchical structures, its juxtaposed nature impairs the comparison of many states.
To overcome this issue, we analyzed existing methods for the visualization of dynamic
hierarchies and combined the benefits of treemaps and stream-based approaches to dis-
play both the individual hierarchies and their evolution over time. We conducted a user
study to evaluate the differences in effectiveness on low-level tasks and captured per-
ceptual characteristics in hierarchical visualizations over time. The results suggest that
our visualization can be applied as a general-purpose method to replace previous rep-
resentations for static hierarchies and hierarchical changes over time. All compared
visualization types and the effects of mutual parameters can be explored through our
open-source implementation.

Finally, we explored aesthetic characteristics of artistic diagrammatic paintings and
aimed to apply their visual appeal to storyline visualizations. We developed an interac-
tive application that utilizes techniques for automatic layouting and image processing
to create visual results similar to hand-drawn diagrams. Our application can further
help artists create an initial layout by interactively adding data to the representation
and focus their efforts on artistic aspects that are difficult for machines to imitate.

In the combination of our work, we explore the visualization field from several dif-
ferent viewpoints, move from visualization theory to practice, and show how individual
components of visualization comparison can be combined for greater knowledge gain.
We hope to encourage visualization researchers to merge their efforts into a larger the-
ory and understanding of how visualizations work and to create objectively effective
visualization solutions.

List of Papers

This thesis is based on the following papers:

(A) Fabian Bolte and Stefan Bruckner. Measures in Visualization Space. In Founda-
tions of Data Visualization (2020), Springer. ISBN: 978-3-030-34443-6

(B) Fabian Bolte and Stefan Bruckner. Vis-a-Vis: Visual Exploration of Visualiza-
tion Source Code Evolution. In IEEE Transactions on Visualization and Com-
puter Graphics (2020). doi: 10.1109/TVCG.2019.2963651

(C) Fabian Bolte, Mahsan Nourani, Eric D. Ragan, and Stefan Bruckner. Split-
Streams: A Visual Metaphor for Evolving Hierarchies. In IEEE Transactions on
Visualization and Computer Graphics (2020). doi: 10.1109/TVCG.2020.2973564

(D) Fabian Bolte and Stefan Bruckner. Organic Narrative Charts. In Eurographics
2020 - Short Papers (2020). doi: 10.2312/egs.20201026

The following publication is also related to this thesis:

(1) Thomas Trautner, Fabian Bolte, Sergej Stoppel, and Stefan Bruckner, Sunspot
Plots: Model-based Structure Enhancement for Dense Scatter Plots, Computer
Graphics Forum (2020). doi: 10.1111/cgf.14001

The manuscripts presented in this thesis were written during the PhD studies of
the main author and in collaboration with Stefan Bruckner, the main supervisor of the
main author. Stefan Bruckner significantly contributed with advice and guidance to the
realization and publication of the scientific work. Paper C was coauthored by Mahsan
Nourani and Eric D. Ragan, who contributed their evaluation knowledge by designing
a user study and analyzing the results.

https://www.springer.com/gp/book/9783030344436
https://doi.org/10.1109/TVCG.2019.2963651
https://doi.org/10.1109/TVCG.2020.2973564
https://doi.org/10.2312/egs.20201026
https://doi.org/10.1111/cgf.14001

Contents

Scientific Environment i

Acknowledgements iii

Abstract v

List of Papers vii

I Overview 1

1 Introduction 5
1.1 Problem Statement . 7
1.2 Scope and Contributions . 8
1.3 Thesis Structure . 8

2 State of the Art 11
2.1 Parameter Space Exploration . 11
2.2 Visualization Space Exploration . 13
2.3 Arts and Aesthetics in Visualization 18

3 Contributions 21
3.1 Theory of Visualization Assessment 21
3.2 Visualization for Visualization Developers 23

3.2.1 Automatic Compilation and Version Control 24
3.2.2 Visual Exploration of Visualization Algorithms 26

3.3 Stream-based Visualization and Aesthetics 29
3.3.1 Visualization Interpolation for Dynamic Hierarchies 29
3.3.2 Aesthetics in Stream-Based Visualizations 30

4 Demonstration Cases 35
4.1 Exploration of Visualization Source Code 35
4.2 Visualization of Dynamic Hierarchies 38
4.3 Aesthetics in Storyline Visualization 42

5 Conclusion and Future Work 45

x CONTENTS

II Scientific Results 49

A Measures in Visualization Space 51
A.1 Introduction . 51
A.2 Measurement in Science . 53
A.3 Types of Visualization Measures . 55

A.3.1 Measures of Perceptual Characteristics 55
A.3.2 Task-Oriented Quality Measures 57
A.3.3 Structure-Oriented Measures 59
A.3.4 Meta-Perceptual Process Measures 62

A.4 Towards a "Bigger Picture" . 64
A.5 Conclusion . 67

B Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution 69
B.1 Introduction . 69
B.2 Related Work . 71
B.3 Overview . 73

B.3.1 User and Task Requirements 73
B.3.2 System Design . 75

B.4 Exploring Visualization Source Code 77
B.4.1 Automatic Revision Management 77
B.4.2 Visualization of Algorithm Evolution 78
B.4.3 Parameter Management . 80
B.4.4 System Interactions . 80

B.5 Implementation . 83
B.6 Usage Examples . 84

B.6.1 Flow Visualization . 84
B.6.2 Stylized Line Primitives . 87

B.7 Evaluation . 89
B.8 Discussion . 92
B.9 Conclusion . 94
B.10 Acknowledgements . 95

C SplitStreams: A Visual Metaphor for Evolving Hierarchies 97
C.1 Introduction . 97
C.2 Related Work . 99
C.3 Overview . 101

C.3.1 Data . 101
C.3.2 Visual Encoding . 102

C.4 SplitStream Generation . 104
C.4.1 Hierarchy-Change Ratio . 104
C.4.2 Splits and X-Margins . 107
C.4.3 Y-Padding and Y-Margin . 108
C.4.4 Algorithm . 110
C.4.5 Implementation . 111

C.5 Use Cases . 112
C.5.1 MeSH Taxonomy . 112

CONTENTS xi

C.5.2 Leaflet Github . 114
C.6 Evaluation . 114

C.6.1 Motivation . 114
C.6.2 Hypotheses and Goals . 115
C.6.3 Experiment Design and Task 115
C.6.4 Participants and Procedure . 116
C.6.5 Results . 116

C.7 Discussion . 119
C.8 Conclusion . 120
C.9 Acknowledgements . 120

D Organic Narrative Charts 123
D.1 Introduction . 123
D.2 Related Work . 124
D.3 Overview . 125
D.4 Method . 126
D.5 Discussion and Limitations . 129
D.6 Conclusion . 129

0

Part I

Overview

0

0

«I am ready! I am ready! I am ready!»
Spongebob Squarepants

0

11

Chapter 1

Introduction

Data is one of the most sought after resources to analyze, improve, and personalize
products, but it is only as valuable as the insights gained from it. Visualization is a tool
to discover information in data and to form a mental model of underlying features and
phenomena by taking advantage of human perceptual capabilities. In a standard visual-
ization pipeline, data is transformed, mapped to a visual representation, and displayed
to the user. The question of which visual mapping to apply for a given task poses one
of the main pillars of visualization research. The vast amount of visualization types
and layouts, visual channels, and encodings for individual data items describes a large
space of possible visualization solutions that needs to be explored to discover the best
fitting representation.

In the remainder of this thesis, we use the term visualization space to refer to the
collection of all possible visual representations. We can imagine existing visualizations
to be scattered in this multi-dimensional space and the distance between two specific
visualizations to indicate their similarity. In this case, less similar visualizations are
farther apart from each other. Additionally, every visualization method has a number
of parameters that influence the mapping from data to a visual result. We describe the
parameter space as a collection of visualizations that result from applying the same
visualization method with different parameter settings. We see the parameter space of
a visualization method as a subset of the visualization space. We can imagine it as a
bubble that contains multiple visualizations which can be morphed into another through
the adjustment of parameters. When two visualization methods with certain parameter
sets create the same visualization, their parameter spaces overlap.

When a visualization designer is asked to create the best visualization for a given
dataset, user, and task, the procedure can be described as an exploration of the visual-
ization space. The designer can consider every possible visualization, compare their in-
dividual benefits and drawbacks, and estimate their suitability for the problem at hand.
But the visualization space is vast, in that it requires a lot of time to inspect every possi-
ble visualization, and it is sparse, meaning that only a number of different visualization
types have been realized while the space between distinct visualizations is often un-
explored. Most importantly though, it is not clear how the visualization space can be
explored and navigated through. For this reason, a designer might only consider a few
visualization solutions and, based on their experience, create a new visualization when
considered representations are not sufficient for the task at hand.

Considerable research efforts have been made to explore the visualization space
from different perspectives and to guide designers through the process of creating a

1

6 Introduction

visualization. Theoretical approaches typically attempt to describe the visualization
space as a whole by defining models or pipelines that characterize a visualization based
on standardized terms, or detail the visualization creation process. Such models can,
amongst other things, provide guidelines towards best practices (e.g., “overview first,
details on demand“ [179]) and rankings of visual encodings. Over time, these guide-
lines can become principles [48] in a generalized system to, e.g., analyze if a visual-
ization uses the best visual channels for the given data and task, or if data relationships
are also related in the visual representation. While such a general analysis allows for
the comparison of multiple visualizations, it is difficult to propose a theory that covers
all visualization types without major abstraction from their actual application.

Quality metrics, on the other hand, take a rather practical approach at improving a
given visual data representation. The idea is that a measurable component of the visu-
alization is analyzed and optimized to improve its visual quality. Typical examples are
the minimization of wiggle in streamgraphs [43] and the reduction of edge crossings
in graph representations [157]. The former is specific to stream-based visualizations,
but the latter can be applied to all visualizations that use edges, such as parallel coordi-
nate plots, storylines, and Sankey diagrams. This shows that quality metrics are mostly
specific to a small number of representations based on the individually utilized visual
encodings. They provide useful means for the improvement of a given visualization,
but are limited in their capability of comparing multiple visualizations with each other.

User studies can help evaluate a single representation, compare multiple visualiza-
tions, or assess general visual properties in terms of their effectiveness and efficiency
for the user. For example, studies of human visual perception aim to understand how vi-
sual information is transformed from the visualization to its representation in the human
mind. This approach can help build a theoretical understanding of how visualizations
work and provide practical means to optimize visualizations for a better information
mapping. So far, we have only understood low-level perceptual properties of the hu-
man visual system, which allows us, for example, to choose a good color scheme for
a visualization and to steer the viewer’s focus. To understand higher-level perception
and cognition, such as sense-making, more research will be required.

Even with human perception fully understood, there are other cognitive processes
in the human mind that affect our experience when viewing visualizations. We refer to
such characteristics as meta-perceptual properties, which are hard to measure and of-
ten neglected in common visualization design. Such features include how aesthetically
pleasing a representation is, how well it can be memorized, or how profitable it might
be. By analyzing such high-level properties, we can integrate knowledge from other
fields, such as art and economy, and broaden the field of visualization research beyond
the general goal of generating insights.

In this thesis, we aim to assess the visualization space from a variety of different
viewpoints. First, we provide a theoretical analysis of measures for the assessment of
visualization techniques. We then reflect on our findings and present a novel system for
the exploration of the visualization space for visualization developers. Our approach
includes innovative ideas for the comparison of visualization techniques and their visual
results across parameter spaces. Based on our system’s requirement to display changes
in hierarchical data structures, we develop a static visualization method for dynamic
hierarchies that combines the advantages of treemaps and stream-based approaches. To
assess the effectiveness of our visualization methods, we incorporate both qualitative

1

1.1 Problem Statement 7

and quantitative user evaluations and thereby contribute to the understanding of human
visual perception. Finally, we assess how the visual appeal of artistic paintings can be
transferred to stream-based visualizations to improve their aesthetics and possibly their
memorability. Our approach benefits both fields by transferring knowledge from arts
to visualization and by developing a visualization tool for artists.

1.1 Problem Statement

The visualization space describes all possible visual representations that designers can
explore to choose an optimal visualization for a given task, user, and dataset. Due to
the sheer amount of possible representations, an exhaustive exploration of this space is
not practically feasible and needs to be limited and steered to at least find a well fitting
representation for the data.

Theoretical assessments of visualizations provide models and guidelines for the
creation of effective visualizations. They often stem from empirical knowledge and
long-term experience in the field, and aim to abstract from specific approaches towards
general statements and best practices. In order to strengthen the field of visualization
research, continuous efforts need to be made to integrate new insights, abstract gathered
knowledge, and merge theories into a general understanding of the research field.

While guidance towards good visualization practices is often of theoretical nature or
integrated in recommendation systems for novice users, the field lacks support systems
for experts who create visualizations from source code. In particular, the graphical re-
sult of visualization algorithms is often neglected in common software visualizations
and analysis tools. The visualization community would greatly benefit from an expert
tool that integrates means for the comparison of multiple visualization algorithms, sup-
ports a large number of different visualization types, and allows for the inspection of
parameter settings during the development process.

Several approaches already enable the exploration of the parameter space for a sin-
gle visualization with varying datasets. But during the development process, an expert
might consider multiple visualization techniques or visual features that expose differ-
ent parameters or react differently to similar parameter changes. So far, little effort has
been made to explore the common parameter space between multiple visualization al-
gorithms. For example, changing the same parameter in two different algorithms might
result in different magnitudes of impact on the visual result. Similarly, some parame-
ters might in general have a larger impact on the visual result than others. The analysis
of how a single parameter acts in different visualization algorithms and how its change
influences the respective outcome can yield further insight in the importance of this
parameter and towards the comparison of diverse visualization approaches.

While efficiency and insight gain are often the main considerations when selecting a
visualization method, other properties can be considered to steer the exploration of the
visualization space. Aesthetics, for example, are known to influence the user’s interest
in a visualization [80] and their ability to memorize it [33]. A visualization designer
might therefore prefer an aesthetically pleasing representation over an efficient one for
users in the education domain. Since art continuously manages to fascinate viewers
and to create aesthetically pleasing visuals, we could benefit from an integration of
common art practices to create more engaging and memorable visualizations.

1

8 Introduction

1.2 Scope and Contributions

The research presented in this thesis explores the visualization space from multiple per-
spectives. We take both theoretical and practical approaches into account, contribute to
the comparability of scientific visualizations, evaluate task-specific metrics, and con-
sider aesthetics as a meta-perceptual characteristic for information visualization. The
contributions can be summarized as follows:

1. Theory. We analyze previous work on visualization space exploration and distin-
guish classes of task-oriented, perceptual, meta-perceptual, and structure-oriented
measures. We describe their individual strengths and shortcomings and propose a
direction to combine the separate efforts into a bigger picture to advance the field
of visualization research as a whole.

2. Visual comparison. We develop one of the first applications to explore the evo-
lution of visualization algorithms during their development. We then compare
visualizations of dynamic hierarchies and allow for their exploration through the
provision of an open-source library. In this process, we utilize visual comparison,
visual parameter space exploration, task-specific measures, and user evaluations
for the assessment of specific visual properties.

3. Timelines. We evaluate and develop visualizations for time-dependent data in-
cluding provenance in visualization source code development, evolution of hier-
archical data structures, and storyline visualizations. Our applications target a
variety of user groups including visualization experts, students, and novices, as
well as expert users from other fields (e.g., art).

4. Parameters. We present an initial attempt to ease parameter space exploration
across visualization techniques by analyzing the impact of parameter changes on
visual results of varying algorithms. We discover a parameter for the interpolation
of two visualization techniques for the representation of dynamic tree structures
and analyze the effects of selected parameters on stream-based visualizations.

5. Aesthetics. We present an approach to integrate aesthetics into storyline visual-
izations by analyzing visual elements in existing artistic paintings and incorpo-
rating similar stylistic patterns into the visualization algorithm.

1.3 Thesis Structure

This thesis consists of two parts: I) an overview of the carried out research and II) a
presentation of individual publications. The format of the published work was adjusted
to fit the thesis layout and the bibliographies of individual papers were merged into
a unified bibliography. Chapter 1 of the overview poses an introduction to the topic,
states the general problems to solve, and provides a scope of the achieved contributions.
We discuss related work on visualization exploration in Chapter 2, including practical
approaches, systematizations, interpolations, and parameter explorations. Based on the
related work, Chapter 3 outlines the contributions of this thesis. We present examples

1

1.3 Thesis Structure 9

and demonstrations of individual achievements in Chapter 4 and conclude the thesis in
Chapter 5 by providing a direction for future work.

The second part of this thesis includes four publications that describe the individual
contributions in detail. Paper A expands on the first contribution. Papers B and C
provide details for contribution 2. Contributions 3 and 4 are shared by papers B, C, and
D. Paper D further illustrates contribution 5.

1

«Oh yes, the past can hurt. But you can either run from it or learn from it.»
Rafiki

22
Chapter 2

State of the Art

In this thesis, we present novel methods for the exploration of the visualization
space and parameter space, provide a new example for visualization interpolation, and
integrate aesthetic considerations from art into visualization design. Our work con-
tributes to the fields of scientific and information visualization.

In this chapter, we discuss the state of the art for visualization space exploration.
We begin our literature review with methods that enable the visual exploration of the
parameter space for a given visualization. We continue with approaches that extend the
exploration to multiple visualizations and allow for their comparison. We specifically
examine methods that can recommend existing visualizations to the user or even create
new designs through visualization interpolation. Finally, we look into work where
arts and aesthetics were considered and incorporated into the visualization design. We
provide a more detailed discussion of the relations between previous work and our own
contributions in the individual related work sections of our papers in Part II.

2.1 Parameter Space Exploration

Many visualization algorithms contain parameters that considerably influence the visu-
alization result and provide the flexibility to adjust the visualization to the desired task.
While simple interactive interfaces let the user adjust parameter values through sliders
and buttons, they only display the result for the selected parameter set and require the
user to build a mental model of the parameter space. When the number of parameters
increases, it can become difficult for users to select a good set of parameters to achieve
the desired visual result, especially when the change of one parameter affects the vi-
sual impact of other parameters. In these cases, approaches that ease the exploration
of complex parameter spaces can support the user in understanding the relations be-
tween parameters and selecting a set that results in a visualization suitable for the given
task. We specifically focus on methods that utilize result images for the exploration of
parameters and their effects on the visual output.

The GRASPARC [36] system displays parameter settings and the visual result in
a tree representation to record the history of user interactions and to allow for their
exploration. Design Galleries [143] automatically compute the result images for dif-
ferent parameter sets in a given visualization and display them side by side to enable
the visual comparison of results. They utilize an image distance function to group and
display a broad range of visually differing results and their parameter sets. The user

2

12 State of the Art

Figure 2.1: Left: Design Galleries [143] display example images for parameter sets that cre-
ate visually distant results. Right: Image Graphs [138] additionally display the difference in
rendering parameters via edges between result images.

is given a simple overview and can choose a parameter set based on the visual qual-
ity of the results. Image Graphs [138] go a step further by linking each result image of
a parameter set to another result that it can be derived from. They display the param-
eter change that is required to lead to another result, like a change in color, shading,
or camera position, which results in a more detailed picture of the parameter space.
Both approaches, shown in Figure 2.1, inspired us to display result images of varying
visualization algorithms in a side-by-side overview.

Jankun-Kelly et al. [101] extend 2D spreadsheets of image results into an inter-
active exploration of the multi-dimensional parameter space. They describe a formal
model [102] to capture the process of a visualization exploration session in a graph
where each visual result is displayed in relation to the results it derived from. This con-
cept matured in the formalization of the P-Set model [103], which describes parameter
space exploration for visualizations as a selection of new parameters based on the re-
sult of a previously chosen parameter set. When the user applies a new parameter set to
the algorithm, the visualization is transformed. The exploration process can be contin-
ued by investigating the visualization and applying further parameter adjustments. The
tracking and display of the interaction history and parameter sets can benefit the explo-
ration process by reducing repetitive selections and providing suggestions for where
to go next. We apply a similar concept in our own work, where users change source
code and the history of changes is displayed for exploration purposes and to reduce
repetition.

Figure 2.2: Small multiples provide an overview over different visualization types (left) or dif-
ferent parameter sets (right), whereas large singles allow for a detailed comparison of selected
approaches. This figure was adapted from Small Multiples Large Singles [206].

2

2.2 Visualization Space Exploration 13

Tory and Möller [201] utilize a parallel coordinate like view and map result images
to their underlying parameter settings for an interactive parameter exploration. In an at-
tempt to structure the navigation process, Small Multiples Large Singles [206] support
the user in a continuous exploration of the visualization space. The authors show many
parameter options as small multiples and selected states in larger views for a detailed
comparison. The user can, in an iterative manner, alternate between large selections
and detailed comparisons to find a visual result that best fits their needs. We display
an example for this navigation method in Figure 2.2 and utilize the display of small
multiples and large singles for visualization exploration in our own application.

Sedlmair et al. [177] describe tasks for parameter space analysis — like optimiza-
tion, partitioning, filtering, finding outliers, exploring uncertainty, and inspecting pa-
rameter sensitivity. They further describe problems and navigation strategies for pa-
rameter space exploration and combine their findings in a conceptual framework.

2.2 Visualization Space Exploration

While the exploration of the parameter space is essential to derive a good parameter
set for a specific visualization, it does not provide answers for which visualization type
to apply to a given dataset. As such, the parameter space for visualization algorithms
can be seen as a subspace of the visualization space, which in turn includes all possi-
ble visual data representations. In this section, we discuss approaches that enable the
comparison of visualization results, the navigation through the visualization space, rec-
ommendations for visualization techniques, and interpolations to combine advantages
of multiple representations.

Comparative Visualization
Comparative visualizations enable the comparison of multiple data sets through their
visual representations [152]. They help users in finding differences in 3D Meshes [173],
diffusion tensor fields [231], genome sequencing data [18], and many others. Woodring
and Shen [227] display computed differences in volume data and Lampe et al. [125]
suggest to reform volumes along a curve for easier comparison. The high importance of
the comparison task led researchers to survey, analyze, and discuss comparison strate-
gies for individual application domains, as seen by Verma and Pang [210] for flow
visualization and Graham and Kennedy [76] for tree representations.

Given that most visual comparison tasks require users to find differences in result
images, Zhou et al. [233] aim to automate this process and evaluate strengths and weak-
nesses of eleven image quality metrics for their ability to separate similar and different
images. Malik et al. [141] take a different approach and present multi-image views to
compare multiple datasets in a single image. Similarly, VAICo [172] displays sets of
images in a single image and integrates interaction to reveal their individual differences.

Gleicher et al. [73] analyze existing work on information visualization comparison
and demonstrate that all examined approaches can be summarized in a taxonomy of
juxtaposition, superposition, and explicit encoding. In other words, the authors show
that, comparative visualizations display objects next to each other, on top of each other,
or display computed object differences. We show an example of each category in Fig-
ure 2.3. Some approaches further combine these methods, most commonly by showing

2

14 State of the Art

(a) Juxtaposition (b) Superposition (offset) (c) Explicit Encoding

Figure 2.3: Visual designs for comparative visualization (adapted from Gleicher et al. [73]).
(a) Juxtaposition places objects side by side, whereas (b) superposition places objects on top
of each other. Offset and blending can address overplotting issues. If differences can be
computed, (c) explicit encodings can display the differences directly. For example, we display
common properties in grey and differences in the color of the object they stem from.

multiple computed differences in a side-by-side view. Javed and Elmquist [105] fur-
ther suggest overloading, nesting, and integration as additional design principles, which
provide a more detailed partitioning of juxtaposition and superposition designs. Simi-
larly, Chen et al. [50] establish the term visual multiplexing to refer to visually overlaid
information and provide a framework for superposition designs. While none of these
authors argue for one design being better than another, Ondov and colleagues [104, 151]
evaluate basic visualization designs with common comparison tasks. In an attempt to
automate the design of comparative visualizations for spatial data ensembles, Kole-
sar et al. [119] compute an optimal abstraction of spatial information while preserving
user-defined characteristics. This way, more ensemble members can be displayed and
compared to each other, without losing essential information.

Finally, Gleicher [72] discusses visual comparison in terms of the elements that are
being compared, what challenges occur, which strategies help address these challenges,
and which designs are considered for effective comparison. As main challenges, he
names the number, size, and complexity of compared objects, as well as the size and
complexity of their relationships. To address these scalability issues, common strate-
gies limit the number of examined items, let the user experience them in sequence, or
display an abstraction of objects. These challenges often lead to tradeoffs in the appli-
cation design, so that either the number of addressed challenges or the usability of the
application is reduced.

While we apply many of the discussed comparison concepts, the goal of our work
is not the comparison of datasets, but rather the comparison of visualization techniques.

Exploration of Visualization Pipelines
The visualization process is often described as a transformation from data space into
visualization space into image space [77]. Several visualization frameworks, like
VTK [174], ParaView [17], and MeVisLab [118], allow for the construction of a vi-
sualization pipeline, which consists of several connected algorithmic modules that re-
alize the implementation of the scientific visualization process. Such systems allow
for rapid prototyping of visualization algorithms and provide insight into the created
pipeline. The comparison of visualization pipelines can be utilized to compare visual-
ization techniques and to explore their parameter settings. For example, Chi et al. [51]
use visualization pipelines to implement information visualization spreadsheets that

2

2.2 Visualization Space Exploration 15

display multiple visualization techniques at the same time. They then apply varying
parameter sets and display the resulting visual outcomes. By displaying results for
varying parameter sets and visualization techniques at the same time, this approach
allows for the simultaneous exploration of the visualization space and parameter space.

Provenance is a term widely used by the visualization community (and beyond) to
describe the history of data transformations, visualization states, user interactions, ana-
lytical findings, and reasoning [159]. Giving users access to such histories enables them
to inspect previous results, undo mistakes, and explore multiple paths to solve the prob-
lem at hand. Furthermore, provenance can serve as a tool to increase reproducibility of
results, communicate cognitive processes in a collaborative environment, and teach vi-
sualization creation to students. VisTrails [26] displays the history of visual results and
user interactions in the creation of a VTK pipeline. The user can inspect previous states
and compare them to the current pipeline. The results of multiple pipelines can further
be shown next to each other to create large visualization ensembles and spreadsheets
(see Figure 2.4). By inspecting the visual results and pipelines of multiple visualization
techniques, users can compare the methods and discover their individual differences.

Figure 2.4: VisTrails [26] allows for the creation of spreadsheets to compare results from
multiple visualization pipelines (top: isovalues, bottom: volume rendering). Parameters can
be changed and synchronized across pipelines for their exploration.

In contrast to VisTrails, which is built on top of VTK, Callahan et al. [44] developed
a stand-alone application that receives data through an API, so that it can extend any
existing visualization system. They demonstrate how their application can extend Par-
aView [17] to inspect the history of user interactions. Silva et al. [181] further demon-
strate how the exploration and comparison of visualization pipelines can be utilized
to teach university students how visualizations are created, which common mistakes
happen during their creation, and how varying techniques differ in detail.

Our work focusses on the rendering process of the visualization pipeline and, specif-
ically, at the development of rendering algorithms. We aim to integrate the provenance
of user interactions and visualization states into the development process and display
the concurrent evolution of source code and visual result. This history can then be used

2

16 State of the Art

to explore the exposed visualization space and to teach visualization algorithm devel-
opment to university students.

Visualization Interpolation and Recommender Systems
Instead of users interactively exploring the visualization space, automatic systems can
analyze existing visualization techniques to present methods that fit the requirements or
to suggest novel designs. A strong theoretical understanding of different visualization
types, their shortcomings and strengths, as well as their perceptual properties, provides
the basis for automatic recommendation of good visualizations. Such tools can in par-
ticular benefit novice users to select a visualization that fits their data and task at hand.
While many recommendation systems suggest well defined presets of visualization de-
signs, others are capable of combining diverse representations. We discuss different ap-
proaches of visualization recommendation systems, include combinations of designs,
and specifically highlight methods that interpolate between multiple visualizations.

In one of the first automatic approaches for visualization design, Mackinlay [139]
utilizes rankings of visual embeddings from perceptual studies to automatically choose
a visualization with preferable perceptual properties. SAGE [163] presents previously
created visualizations that match the user’s intent, allows for the assembly of visualiza-
tions, and for their customization. Similarly, IMPROVISE* [234] holds a database of
existing visual designs and recommends sketches that are most similar to a user request.
Furthermore, it allows for visual refinements via sketch synthesis based on user feed-
back. Focusing on the presentation of small multiple views, Show Me [140] integrates
an automatic selection of visual marks with a selection of visualization techniques
ranked by their fit to the data. Gotz and Wen [74] present an alternative approach where
they analyze user behavior and detect patterns in the interaction with the visualization
to recommend a visualization that better facilitates the task. Other approaches integrate
knowledge ontologies for the semantic web (SemViz [71], Viso [214]), statistical data
properties and user votes (VizDeck [110]), and deep neural networks [62, 93] into the
recommendation process. Finally, CompassQL [225] is a query language which aims
to generalize the inquiry of visualization recommendations and demonstrates how it
can be integrated with existing recommender systems. This general-purpose approach
yields the potential to query the visualization space and fosters its exploration.

Based on visualization pipelines, Scheidegger et al. [171] demonstrate how an auto-
matic comparison can not only query for varying visualization algorithms, but also cre-
ate new visualizations by adjusting pipelines based on computed analogies. As shown
in Figure 2.5, features can be extracted from one visualization technique and added to
another pipeline. VisMashup [169] particularly targets novice users and provides sim-
ple interaction widgets for the creation of custom visualizations. VisComplete [120]
suggests partial completions of visualization pipelines based on a collection of exist-
ing pipelines. This approach helps both novice users by suggesting full pipelines and
experts by suggesting minor improvements. Based on our application for visualization
algorithm development, we aim to integrate similar functionalities for visualization rec-
ommendation and automatic source code completion in the future.

Liu et al. [134] present an approach to interpolate results of volume rendering tech-
niques by finding features in data and merging the transfer functions that created in-
dividual results. They provide a simple interface that enables novice users to create a
transfer function by combining the results of provided example images. A similar ap-

2

2.2 Visualization Space Exploration 17

Figure 2.5: Existing visualization pipelines (left) can be analyzed to extract features and auto-
matically apply them to a new pipeline (right) [171]. This way, implemented features can be
reused and integrated into recommender systems.

proach is presented by Wu et al. [228], where volume renderings from different transfer
functions are aligned on a palette similar to a color wheel. Claessen and Van Wijk [52]
show how visualizations for multivariate data, like scatter plots and parallel coordinate
plots, can be unified in a description of multiple linked axes. Their flexible approach
further allows for the creation and exploration of new visualization techniques based
on the same original concept.

Multiple visualization techniques can be combined through embedding, like tree-
maps embedded in bar charts [94] or data tables [196], and adjacency matrices embed-
ded in node-link graph representations [88]. Specifically the latter could implement a
parameter to linearly interpolate between an adjacency matrix and a node-link graph
to define the percentage of nodes that are represented by each individual approach.
Schulz and Hadlak [176] formalize this idea and describe the visualization space as an
interpolation of visualization presets. They demonstrate how the blending between dif-
ferent visualization techniques through numerical parameter configurations can yield
new interpolated visualization designs (see Figure 2.6). We extend this approach by
presenting an interpolation of time-dependent visualization presets. In our work, we
focus on representations for dynamic hierarchies and define a parameter for the inter-
polation of one-dimensional treemaps and nested streamgraphs.

Figure 2.6: Yellow charts mark predefined visualization designs, whereas grey charts are in-
terpolated between presets through parameter adjustments [176].

2

18 State of the Art

2.3 Arts and Aesthetics in Visualization

While the typical goal of visualization designers is to create representations that are
effective and efficient in conveying the underlying data features, some designs turn
out more visually appealing than others. It is therefore to no surprise that researchers
became interested in studying the aesthetic qualities of visualizations. For example,
Tractinsky et al. [202] found a strong correlation between aesthetics and the usability
of a visualization. Harrison et al. [80] found that users judged the aesthetic appeal of a
visualization on a mere 500ms exposure mostly by its colorfulness and its complexity.
These findings varied based on age and gender, but generally suggest more colorful and
less complex representations, which can in turn improve their memorability [33].

Several research efforts were made to apply artistic styles to 3D graphic renderings.
Winkenbach and Salesin [222] demonstrate a rendering technique that looks similar to
pen and ink illustrations. Kyprianidis et al. [124] summarize many of the approaches
in non-photorealistic rendering and create a taxonomy of techniques for the transfer
of artistic styles to images and videos. Later approaches are mostly example-based
techniques or built on top of convolutional neural networks. StylIt [67] uses hand-
drawn spheres as examples to integrate illumination effects and to improve the fidelity
of stylized images. Some of the examples and result images can be seen in Figure 2.7.
Frigo et al. [68] inspect the differences between local and global effects of color and
texture to preserve image structure during style transfer. Such example-based style
transfers are one application of patch-based image synthesis techniques, surveyed by
Barnes and Zhang [23]. Convolutional neural networks were for example used by
Gatys et al. [69] to transfer styles from artworks to photographs, as well as by Selim et
al. [178] to apply artistic styles from drawn to photographed portraits. In our work, we
follow similar goals and aim to apply an artistic style to information visualization.

Figure 2.7: Hand-drawn spheres (top) are used as examples to apply similar artistic styles to
3D renderings (bottom). This figure was adapted from Fišer et al. [67].

Lau and Moere [129] proposed a model for aesthetics in information visualization,
seeing aesthetics as the degree of artistic influence on the data mapping, rather than as a
measure of appeal. In this sense, it should be discussed how art and visualization differ
from, or influence each other. Kosara [122] compares information visualization and
arts, saying that visual efficiency (like the ability to read data) is not a major concern

2

2.3 Arts and Aesthetics in Visualization 19

in arts, but rather to convey the basic matter. He further alludes to visualization and art
lying at opposite ends of a sublimity scale and thereby refers to their contrary goals.
Ramirez [160] on the other hand argues that aesthetic information visualization aims to
present a subjective impression rather than to convey a message.

Instead of applying artistic approaches to visualization, Informative Art [91] con-
siders the opposite direction where information is integrated into art displays by, for
example, changing the color in the image based on the weather or time. Viégas and
Wattenberg [213] survey similar artworks which integrate methods from information
visualization. They provide a common vocabulary in this field and, for example, define
artistic visualization (or visualization art) as a data-based visualization that was created
with the intent to make art. This definition also clarifies the distinction between artis-
tic visualization and art, since the latter is typically not based on data. At the same
time, they argue that beautiful visualizations cannot be considered art since they lack
the artistic intent. This definition draws a clear line between aesthetically pleasing vi-
sualizations and visualization art. An extended discussion of literature on aesthetics,
art, and visualization is given by Lang [126] and Gough [75].

In an attempt to integrate artistic appeal into visualizations, several approaches
employ digital brush strokes to imitate paintings [83, 115, 116, 194]. Samsel et
al. [168] extract color palettes from artworks that communicate different emotional
moods to create engaging scientific visualizations. Finally, Johnson et al. [109] intro-
duce Artifact-Based Rendering, a technique that starts with physical artistic elements
like paintings, sculptures, and photographs, and integrates them with 3D scientific visu-
alization methods. Their approach yields benefits for artists to easier create visualiza-
tion art, as well as for visualization experts, by introducing new and engaging elements
for the visual mapping of data. This method provides an expressive way of synergiz-
ing art and visualization and to create aesthetically pleasing results. We demonstrate an
example for stroke-based and artifact-based rendering in Figure 2.8. Our own efforts
follow this direction by combining arts and information visualization to support artists
in the creation of visualization art, and to enhance the aesthetic appeal of storyline
visualizations.

Figure 2.8: Left: Visualization of a supernova data set using brush strokes [194]. Right:
Artifact-Based Rendering [109] of the current, flow curvature, temperature, salinity, and nitrate
concentrations in the Golf of Mexico.

2

«Answers were always important, but they were seldom easy.»
Patrick Rothfuss

33

Chapter 3

Contributions

In this thesis we explore the visualization space from several viewpoints, moving
from theory to practical approaches and present specific applications of visualization
design. After an extensive theoretical assessment of existing approaches for visualiza-
tion space exploration in Paper A, we present an application for visualization experts
and students in Paper B to compare multiple visualization algorithms on a general level.
We choose source code as the underlying basis that all visualization algorithms have
in common, track the complete algorithm development process, and allow for the ex-
ploration of all development states on a visual and source code level. The represen-
tation of source code changes over time helps users to compare states and see trends
in the algorithm development, but it also poses a major challenge due to the complex-
ity of the acquired information. We therefore examine existing approaches that display
the evolution of hierarchical data structures over time, compare and evaluate their dis-
tinct strengths and shortcomings, and present a novel visualization method in Paper C
that merges two representations to take advantage of their individual benefits. Finally,
based on our gathered knowledge in stream-based visualization approaches, we explore
the field of meta-perceptual properties by analyzing aesthetics in artistic diagrammatic
paintings and by applying a similar visual style to storyline visualizations.

3.1 Theory of Visualization Assessment

One of the primary tasks of a visualization creator is to choose a visualization method
that represents the data well and displays it in such a way that a particular user can
extract the information required for a specified task. The effectiveness of the chosen
visualization often depends on the creator’s expertise and can suffer from issues in qual-
ity when, e.g., common guidelines for good visualization practices are not followed. It
is therefore one of the goals of visualization research to provide the necessary knowl-
edge to distinguish good from bad visualizations and to equip visualization creators
with the tools and know-how to build effective visualizations. In the remainder of this
section, we discuss common approaches to assess visualization methods and discuss
how they can be utilized to compare visualizations.

Different visual encodings, such as color, size, and shape, used in a visualization,
steer the user’s focus and affect the way comparisons between individual entities are
made. Users build a mental model of the underlying data based on the visual input
they receive and it is a visualization expert’s goal to find a visual mapping that provides

3

22 Contributions

the user with the most accurate description of the data. If we could faithfully simu-
late human visual perception, we could potentially synthesize visualizations that create
desired impressions in a user’s mind. Having an at least partial understanding of the
perceptual system enables us to choose a visualization that is likely to better represent
the data. We summarize these efforts of comparing visual representations on the basis
of human visual perception as measures of perceptual characteristics. Typical exam-
ples for such measures are user studies to understand low-level perceptual properties,
mathematical, physiologically-based models of neural behavior, and models of higher-
level phenomena like saliency. Cleveland and McGill [53] measure user accuracy in
value comparison tasks based on different visual encodings. This study provides visu-
alization experts with the guidance to choose certain visual encodings over others, like
length rather than angle, for the task of value comparison. Pineo and Ware [154] utilize
a model of retinal and V1 Gabor response to predict the users’ perception of speed in
a flow visualization and thereby steer an automatic parameter optimization for an im-
proved visual representation. Jänicke and Chen [98] measure the mismatch between
features in data and visual features, which allows for a direct comparison of visualiza-
tions and the choice of one that best represents the data. Based on these examples, we
can see that the results of such perceptual approaches can provide guidelines to best
practices, allow for the comparison of different approaches, and steer optimizations of
existing visualization algorithms.

Task-oriented quality measures quantify specific visual properties of a represen-
tation and, when optimized, mean to improve the quality of the visualization. For
example, edge crossings increase the cognitive load on users reading graph represen-
tations [156]. Given this knowledge, the visualization can be improved by choosing a
graph layout with a minimal number of edge crossings. Similarly, wiggle describes the
change in the slope of streamgraph layers and the larger the wiggle, the harder it is to
read the heights of individual layers at any point [43]. In both cases, optimizing the de-
fined quality measure not only improves the readability of the visualization, but further
improves its aesthetic appeal. Other applications for quality measures are optimiza-
tions of orderings in parallel coordinate plots [106], orderings of rows and columns
in matrix views [27], and comparisons of treemap layouts for time-varying hierarchi-
cal data [211]. While task-oriented quality measures are practically oriented and often
lead to automatic approaches to optimize a given visualization, they are mostly specific
to a certain visualization type and therefore rarely generalize to a broader visualization
comparison.

Some properties of visualizations can be measured for all visualization types and
provide a general basis for comparison. Tufte [204] defined a data-to-ink ratio, which
measures the percentage of data-representing pixels in an image, and a lie factor, which
compares data values to the size of their visual representation. But more general prop-
erties are often more theoretically defined so that it can be unclear how to exactly
measure them. One example is Mackinlay’s expressiveness [139], which describes if
a visualization encodes all facts in the data without introducing additional facts. This
definition requires an assessment of what “facts” are and a thorough understanding of
what can be found in the data. We therefore distinguish these measurements from pre-
viously discussed quality metrics and rather consider them as definitions of desirable
characteristics of visualizations. Similar efforts to find relationships between data and
their visual representation have been made by Demiralp et al. [61], who compare the

3

3.2 Visualization for Visualization Developers 23

symmetry and distance in data and visualization space, and Kindlmann and Scheideg-
ger [114], who investigate relations of manipulations between these spaces. Since all
these approaches share a common goal of describing structural characteristics of the
visualization process, we summarize such higher-level measures, theoretical models,
and pipelines for visualization creation as structure-oriented measures. While some re-
search is purely aimed at building a theoretical foundation for visualization [136, 158],
it is often possible to draw practical implications and measures from such models.
For example, Xu et al. [229] apply information theory to visualization, measuring the
amount of information transferred through visual channels, and thereby optimize the
placement of streamlines in flow visualizations. Bruckner et al. [38] describe a model
to analyze the directness of user interactions, which builds a basis for the comparison
of different interaction techniques in a visualization context. Both of these approaches
show how theoretical models not only provide principles for good visualization design,
but can be employed to create specific measures for visualization comparison.

Finally, meta-perceptual process measures describe desired properties of visualiza-
tions beyond the common goals of gaining insights and improving user task perfor-
mance. Examples for such measures are memorability, aesthetics, preattentive pro-
cessing, engagement, and enjoyment. They are often difficult to quantify, not purely
explainable through an understanding of human visual perception, and highly user de-
pendent. For instance, Harrison et al. [80] found that colorful and complex visual
representations are perceived as more aesthetically pleasing, but depend on age, gen-
der, and education of the user. Visual embellishments improve a user’s ability to recall
a visualization [24] and increase enjoyment [166], but also increase the error rate when
reading charts [183], which stands in direct contrast to common visualization goals.
While these meta-perceptual properties might not be the main focus for most visualiza-
tion creators, they can find application in more specialized fields like education, where
memorability and enjoyment can be of higher importance than the perception of exact
values. They therefore play an important role for the general goal of finding a visual-
ization that is best fit for the target user and task at hand.

In conclusion, we summarized and categorized existing approaches for visualization
comparison in the context of their measurability. While some of these attempts, like
task-related measures, have a higher practical impact at present, others may provide a
fuller picture of the visualization space and contribute practical means in the future.
While the individual research fields should be followed for short and long term insight
gain, we believe that a combination of distinct research efforts can lead to a unified
visualization theory and strengthen the field of visualization even further.

3.2 Visualization for Visualization Developers

While many visualization applications are intended for scientists, analysts, and lay
users [86], visualization developers themselves are rarely the target user group of a vi-
sualization system. In the context of visualization comparison, existing applications are
catered to different user groups. For novice users, visualization recommender systems
compare multiple predefined visualizations to automatically choose a good visualiza-
tion for a given dataset. Applications for visualization experts are more specialized,
e.g., to explore the parameter space for one specific visualization type or concrete vi-

3

24 Contributions

sualization algorithm. By examining existing methods for visualization space explo-
ration, we have identified a gap in visualization research which we aim to address by
developing a practical approach for general visualization comparison targeted at vi-
sualization experts. We view source code as the common basis of all visualization
algorithms and present an environment for visualization developers to compare differ-
ent visualization methods during their development on a visual and algorithmic level.
We provide tools specifically designed to support the development process of visual-
ization algorithms, the exploration of the visualization space and parameter space, and
common comparison tasks that would otherwise be hard to execute.

3.2.1 Automatic Compilation and Version Control

We design the interface of our system similar to common integrated development envi-
ronments (IDEs) by providing a text editor with syntax highlighting and auto comple-
tion, and an output window for compilation errors. We utilize a modular window layout
where individual views can be added, moved, and deleted based on the user’s prefer-
ences. The remainder of the available space displays a meta-visualization to provide
visual support for visualization exploration tasks during the algorithm development.
Figure 3.1 shows the application interface during the development of a flow visualiza-
tion. We develop the system as a web application with a client-server architecture to
make it widely available, to facilitate access to higher processing power via server-side
backends, and to provide an easy entry point for students so they do not need to install
compilers or libraries.

Figure 3.1: The interface layout can be adjusted by scaling and moving the individual modules.
It consists of a code editor (left), an interactive view of the visual result (top right), our meta
visualization (center right), and a textual output (bottom right).

Compared to other algorithms in computer science, visualization algorithms pro-
vide a visual result that, as the easiest form of a sanity check, can be inspected for er-

3

3.2 Visualization for Visualization Developers 25

rors or artifacts. We therefore provide a result window that displays the current visual
output of the algorithm and allows for direct interactions with the visualization. We
follow previous approaches that utilize on-the-fly live previews, like ShaderToy [13]
and Vega-Lite [170], by automatically compiling and updating the result view when-
ever the user changes the source code. Parameters of the algorithm can be defined as
input parameters, which not only enables the computation of a new result image with-
out recompilation of the source code when a parameter is changed, but also allows for
the integration of interactions for parameter manipulation. Since the user can define the
algorithm and parameters of interest, this setup provides a good basis for future inte-
grations of extensive parameter space explorations. Similar to Design Galleries [143],
the system could automatically compute images of varying parameter settings, cluster
them, and present possibly interesting sets of parameter values to the user. In our ap-
proach, we aim to investigate the unexplored area of fixed parameter effects on varying
visualization algorithms to reveal, for example, parameter sensitivities that are highly
dependent on algorithmic properties.

When a user changes the source code, it is sent to a server which initiates a compila-
tion process and provides feedback either in the form of a visual result, if it succeeded,
or as a descriptive error message. We keep track of all source code changes in a ver-
sion control system (Git), but only include successfully compiling states as a measure
of clutter reduction. In order to enable the exploration of the complete development
process, we visualize the Git tree in the form of a node-link diagram and integrate in-
tuitive interactions for users to communicate with the version control system without
having comprehensive background knowledge. The individual visual cues of our Git
tree visualization are explained in Figure 3.2. We automatically create a repository for
the user and commit a new revision whenever the source code compiles. Each revision
will be shown to the user as a colored circle that is connected to the circle of the pre-
vious revision through a colored line. The visualization follows a top-down timeline,
where newer revisions are shown below their predecessors. The circle of the currently
viewed revision is marked in orange compared to other revisions that are blue. When
the user clicks on any of the previous revisions, the system will execute a Git check-
out, load the source code from the selected revision into the text editor, show its visual
result in the result view, and mark the now active revision in the Git tree visualization.
This way, the user can easily jump back and forth between different visualization states
through a single mouse click. When a revision with a successor is selected and the
user changes the source code to a new compiling state, the system creates a new Git
branch from the current revision and commits the new source code to the newly cre-
ated branch. This change is represented by a visual branch in the Git tree visualization,
showing two circles that are connected to the same predecessor (see Figure 3.2f). We
highlight the currently active branch by displaying all its revisions in blue and other
nodes in plain grey. To reduce the vertical space of the timeline, consecutive revisions
can be grouped into a merge node, which is emphasized by a green background.

So far, these features could have been achieved in a similar fashion through the
integration of Git and hot-reloading extensions or scripts to common development en-
vironments. We relieve the user from setting up such an environment themselves and
move computationally expensive procedures to a server so that the application can run
on low-level clients. The described architectural functionality builds the basis for the
now following features that drive the exploration of the visualization space.

3

26 Contributions

(a) (b) (c) (d) (e) (f)

Figure 3.2: Git tree visualization. a) Initially, only one node is visible. b) When a new revision
is added, its node is connected to the previous revision’s node and it is marked as the current
state by an orange outline. c) When a new revision with the same source code structure is
added, the nodes are automatically grouped, as indicated by a green background. d) Groups
can be expanded to reveal all grouped states. e) When clicking on a previous revision, its
source code and result image are loaded and it is marked as the currently inspected state. f)
A change of the source code then leads to the creation of a new branch, which is visually
indicated by one node having two child nodes.

3.2.2 Visual Exploration of Visualization Algorithms

Given the data for every compiling state of the algorithm development, we can start to
integrate functionalities for the support of visualization developers that help them com-
pare different algorithmic approaches. To present differences in visual features and
artifacts of the rendering process, we aim to provide the user with a visual compari-
son between different states of their algorithm. Existing result-driven approaches for
parameter space exploration [39, 143] inspired us to show images of results in a jux-
tapositional view to allow for their visual comparison. We display the result image of
every revision of the current branch and horizontally align it with the corresponding
node in the Git tree timeline (see Figure 3.3). This thumbnail serves as a visual rep-
resentation of implemented features in a state and can lead to a faster recognition of
a revision of interest than common commit messages can offer. This visualization of
visualizations provides a fast overview over all developed states and highlights errors
in the algorithm through visually erroneous images. Since this representation of small
multiples limits the size of individual images, we display a larger version of each image
on mouseover. By alternately hovering over images of interest, the user can identify
differences of higher detail.

While this approach showcases major visual differences between states, other fea-
tures might only lead to subtle changes. In order to highlight even minor visual dif-
ferences and counteract cases of change blindness, we display the per-pixel image
variance between result images (Figure 3.3D). The presented variance image not only
reveals areas where the compared images differ, but can also be seen as a kind of
task-related quality metric that quantifies the amount of visual change over time. A
completely white output shows that all pixels of the compared images differ, whereas a
black output represents identical images. Each variance image can be hovered to over-
lay the currently displayed result image with the visual variance and to identify exact
areas of change. We tackle visual comparison on multiple scales by providing a visual

3

3.2 Visualization for Visualization Developers 27

Figure 3.3: Our meta visualization follows a top-down timeline of source code revisions.
A) Git tree visualization. B) Representation of the source code structure in each revision.
C) Visual result image for each revision. D) Visual difference between grouped results.

overview first and details on demand.
In contrast to approaches of parameter space exploration that show images of vi-

sual results for a single visualization with different parameter sets, we not only display
the result for the current parameter set, but for all states of the developed visualization
algorithm. We take advantage of our client-server architecture to compute the effect
of parameter changes not only on the current algorithmic state, but on all revisions
that feature the changed parameter. To be precise, we store the executable of every
compiled revision, execute every revision of the current branch with the updated input
parameter, and update the result images in an asynchronous fashion on the client side.
In Figure 3.4, we demonstrate how a change of camera parameters is applied to mul-
tiple algorithms to ease their comparison. If a user wanted to achieve the same effect
in a common development environment, they would need to change the parameter of
interest, store the visual result, find a revision of interest based on the stored commit
messages, checkout, compile, and execute the selected revision. Only then could a user
compare the result image to the stored one. This process would need to be repeated
for every other revision that the user wants to include in the comparison process. Our
simplified approach of comparing parameters across visualization algorithms provides
a new perspective on parameter space exploration and combines it with approaches for
visualization space exploration. It can, for example, reveal parameters that the under-
lying algorithm is sensitive to and facilitate the identification of parameter values that
provide reasonable results independent of individual feature implementations. We fur-
ther enable the mapping of selected input parameters to interactive interface elements
to ease user access to frequently changed parameters. We lay the foundation for future
research to apply common knowledge from parameter space exploration to multiple
visualization algorithms and explore the effects of parameter changes across the visu-
alization space.

In addition to the evolution of the visual result, we aim to investigate the evolution
of the source code and its relation to implemented visualization features. We therefore
display a high-level abstraction of the source code that represents the principal code
structure for each state (Figure 3.3B). Since the abstract syntax tree of an algorithm is
often too large to reasonably display in its entirety, we trim it to a representation of

3

28 Contributions

Figure 3.4: Left: An integrated interaction technique manipulates the camera parameters. The
new parameter set is applied to all previous revisions to ease the comparison task. Right:
When hovering one of the result images, a tooltip reveals the source code differences between
the hovered and the current state.

nested block scopes. In C-like languages, a code block is enclosed in curly brackets
and each block is either nested inside another block or defined on the document level.
We display the static scope tree as a node-link diagram where the root node represents
the complete source code, the first level includes one node for each source code file,
and each file is a subtree of nested block scopes. The tree displays the number of
block scopes, number of files, blocks per file, and tree depth, which can all provide
directions to describe the complexity of the algorithm. By comparing trees of different
states, we can perceive when files, functions, loops, and conditional statements are
added, removed, or moved during the development. In case the user is interested in a
more detailed breakdown of code changes, we integrate a tooltip that shows the exact
code difference between two states when hovering over a result image of interest (see
Figure 3.4). Similar to the representation of visual changes, we address multiple scales
by visualizing source code changes in an abstract overview and in low-level detail.

The combination of source code changes and representation of result images can
provide insight in the relation between algorithmic modifications and visual impacts. It
can, for example, highlight when many source code changes did not lead to significant
changes in the visual output, or when very few changes majorly impacted the result.
As a future direction, we may integrate quality metrics to measure the visual impact
of every single line of code and visualize it to identify lines that are most sensitive to
adjustments. We believe that the mapping between source code and its visual result
has great potential to showcase the correlation between parts of the algorithm and the
visual features they are responsible for. If this correspondence can be sufficiently en-
capsulated, we might provide tools for visualization developers to define features of
interest and provide recommendations for source code that adds this feature to the ex-
isting code base. Until then, our application provides visualization developers with the
visual support to identify differences between varying algorithmic approaches on both
the visual and the source code level, and to compare implemented features towards their
suitability for the intended task.

3

3.3 Stream-based Visualization and Aesthetics 29

3.3 Stream-based Visualization and Aesthetics

After our discussion of general visualization comparison in theory and practice, we will
now limit our exploration to time-dependent, stream-based visualization techniques.
We will specifically investigate two visualizations of time-varying hierarchies and de-
fine a parameter for their interpolation to benefit from their individual advantages.
We then explore the field of meta-perceptual measures by inspecting the aesthetics of
stream-based approaches and mimic the artistic appeal of diagrammatic paintings into
storyline visualizations.

3.3.1 Visualization Interpolation for Dynamic Hierarchies

While exploring the source code evolution for visualization algorithms, we realized
that tree representations can sufficiently visualize each source code state, but come
with certain deficiencies for the visualization of code changes over time. In particular,
when the trees become larger, the mental matching of nodes in adjacent trees and the
identification of individual changes can be challenging tasks. Even if changing nodes
would be highlighted in the visualization, the fact that one step in the timeline can in-
clude multiple source code changes leads to ambiguities in their interpretation. For
example, the user could not distinguish between a code block moving from one posi-
tion to another, and a block being deleted and another block being added in another
location. We therefore investigated methods for the visualization of hierarchical data
structures and discovered Chronicler [223] and Nested Tracking Graphs [137] that both
utilize streams to display the evolution of each node over time. We generalize these vi-
sualizations under the term nested streamgraph and display their creation process in
Figure 3.5.

Figure 3.5: Stream-based visualization of changes between two trees from left to right. The
nesting of tree nodes is transferred to the stream representation through containment; the dark
blue root node of the tree contains the complete hierarchy and the two medium blue nodes are
nested inside the root node. The light blue node is nested inside one of the medium blue nodes
in one tree, but moves to the other medium blue node in the next hierarchy.

Instead of displaying the hierarchies at individual points in time, nested sreamgraphs
visualize the hierarchical changes directly and thereby provide a more intuitive repre-
sentation that resolves ambiguities in the perception of changes. For example, the
nested streamgraph in Figure 3.5 clearly shows that the light blue node is not deleted
and added, but moving from one parent to another. However, these visualizations seem
to lack the clear outline of hierarchies at individual points in time that juxtaposed tree
visualizations excel at. We therefore conducted a user study to test this phenomenon

3

30 Contributions

and demonstrate that users require a significantly larger number of attempts to answer
questions regarding the understanding of hierarchies in nested streamgraphs compared
to one-dimensional treemaps. We believe that these findings can be explained by the
fact that stream-based visualizations only devote one dimension to the containment of
nodes, whereas every node in a treemap is completely contained by its parent, which
enhances the perception of shapes.

Figure 3.6: Nodes in one-dimensional treemaps (left) are fully contained by their parent ele-
ments, which results in a clear representation of the hierarchy in all three time points. Nested
streamgraphs (right) clarify what kind of change happened to individual nodes, but their con-
tinuous visualization hinders the perception of hierarchies. Our approach (center) combines
both approaches by showing changes via streams, but using full node containment for display-
ing hierarchies.

We designed a new visualization method called SplitStreams that aims to combine
the advantages of treemaps and stream-based approaches to facilitate the perception of
hierarchies and their changes over time. We take the nested streams as a starting point,
split them at every point in time, and, similar to one-dimensional treemaps, utilize
the gained space to represent the hierarchy through containment in both dimensions.
To demonstrate these differences, Figure 3.6 showcases all mentioned visualization
types displaying the same dataset. We define a parameter to control the proportion
of space used for hierarchies and for displaying changes, which can be seen as an
interpolation between one-dimensional treemaps and nested streamgraphs. We explore
further parameters of our visualization that aim to improve the visual quality of all
inspected methods through the adjustment of spacings between elements. The results
of our user study demonstrate that SplitStreams can be employed as a general method
for the visualization of dynamic hierarchical structures, because we were unable to
find significant differences between our method and the combined methods in their
individual strengths.

3.3.2 Aesthetics in Stream-Based Visualizations

During the investigation of stream-based methods for the visualization of hierarchies
over time, we discovered Temporal Treemaps [121] that utilize cushions, similar to
cushions for treemaps [209], to emphasize the perception of hierarchies. We applied
both cushions and drop shadows to our SplitStream approach and, additionally to pos-
sibly improving the hierarchical perception, found them aesthetically appealing. We
demonstrate a comparison of SplitStreams with and without shadows in Figure 3.7.

Ward Shelley’s [16] diagrammatic paintings are hand-drawn artworks that show the
evolution of art-related topics in a stream-based timeline. In addition to using inner

3

3.3 Stream-based Visualization and Aesthetics 31

Figure 3.7: SplitStreams with (right) and without (left) applied shadows.

shadows and drop shadows, they possess a remarkable aesthetic style that stems from
their unique combination of color and shapes. We aim to learn from the artist by ana-
lyzing the aesthetics of his artworks and their individual elements. The goal of our work
is two-fold: First, we aim to generate a similar visual appeal as Ward Shelley’s hand-
drawn paintings in digitally created storyline visualizations. Secondly, by developing
an application for the automatic generation of storylines from data, we can provide
artists with a tool that simplifies the planning process for their complex arrangements
through automatic layout algorithms and integrated interactions for data generation.

Compared to existing layouts for storyline visualizations [135, 150, 192, 193] that
aim for a clean presentation, straight streams, and equal spacings, Ward Shelley utilizes
rather wavy forms for his streams, while still embracing the space – or absence of
space – between individual topics to represent their relation. We encounter a trade-off
between a visualization creator’s aim to present data in a clear fashion, and an artist’s
goal to provide an aesthetically pleasing representation. We aim to find a middle ground
between both approaches and provide the ability to simulate both behaviors with the
aid of a particle-based force layout.

Every stream is represented by multiple connected particles equally spread over
the timeline and individual attractive and repelling forces push the stream into its final
form. An example for the graph representation and its stream-based result can be seen
in Figure 3.8. The computation aims to optimize individual properties of the layout and
is highly dependent on the set of parameter values. Such parameters include the power
of repelling forces between particles, attractive forces between connected particles, a
general gravity keeping the visualization in the center of the selected space, collision
forces, and the definition of a cooldown parameter that reduces all forces over time.
In Figure 3.9 we demonstrate how a different set of parameters can either result in
very straight, or rather wavy streams. The optimization process becomes even more
complicated, because the same force type can be defined with different strengths on
varying properties. For example, we define a stronger attractive force between nodes
of the same stream, compared to connected nodes of different streams, to keep them in
a rather straight line. Also, we apply a different force strength on nodes of connected
streams than on nodes of labels that are connected to a stream node. This way the
distance of labels to their connected streams can be controlled.

The definition of multiple parameters for the optimization process represents a great
opportunity for the application of parameter space exploration approaches. In the con-

3

32 Contributions

Figure 3.8: We interpret the data as a directed acyclic graph (left), where each stream is repre-
sented by connected rectangular graph nodes at every time step. A stream can be nested (pink
inside blue), move into another parent (pink moves into orange), merge with another stream
(orange and blue), and split into multiple streams (pink). Textual nodes (labels) are repre-
sented by a number of circular nodes based on the text length and font size. We differ between
labels outside (blue circles), inside (orange circles), and on top of streams (grey circles). The
resulting stream representation is shown on the right.

Figure 3.9: The application of different parameter settings allows for vastly varying layouts.
In this case, lowering the attractive forces between connected stream nodes leads to a wavier
representation.

text of stream-based visualizations, many task-related quality metrics like edge cross-
ings and empty space can be integrated into the process [192]. Given the inclusion of
aesthetics as a meta-perceptual measure and the combination with arts as another re-
search field, our Organic Narrative Charts portray an example of an interdisciplinary
and wide-ranging application in the field of visualization.

3

«Many people, probably most, must, to find something,
know in advance that it’s there.»
Georg Christoph Lichtenberg

3

44

Chapter 4

Demonstration Cases

With our summary of existing work on measures in visualization space and our ap-
plication for the development of visualization algorithms, we have contributed to the
field of visualization space exploration. Our work on stream-based visualizations gives
an example for parameter-based visualization interpolation and demonstrates how aes-
thetic considerations can be applied to an existing visualization technique. We will
now showcase the implemented support features for visualization development, the ad-
vantages of our stream-based representation for dynamic hierarchies, and the aesthetic
appeal of organic narrative charts.

4.1 Exploration of Visualization Source Code

Figure 4.1: Simple ray casting algorithm in the
Diderot [113] language.

Given a 3D vector field as input, we
aim to visualize the flow patterns in the
data and render the output into an im-
age. We decide to implement the visual-
ization as a ray casting algorithm, where
a ray is shot through every pixel of the
result image into the three-dimensional
space to determine its pixel color. The
domain-specific programming language
Diderot [113] provides simple features
that ease the implementation of visualiza-
tion algorithms. In Figure 4.1 we demon-
strate how a ray casting algorithm can be
set up in just a few lines of code. While
line 1 defines the version of the Diderot
language, lines 2 and 3 define input pa-
rameters to the algorithm, which in this
case set the resolution of the output im-
age. The initially keyword on line 19–21
describes the entry point to the algorithm.
It calls the raycast function for every pixel of the output image by looping through its
width and height. The strand keyword defines a self-contained function, which means
that it is independent of the rest of the algorithm. Such functions can be executed in

4

36 Demonstration Cases

parallel on multiple threads without the individual executions affecting each other. In
our case, the raycast function (lines 5–17) takes the x and y position of a pixel as input
and returns the pixel color as an RGBA vector in line 15. Diderot repeatedly executes
the update function (line 9) until the stabilize function is called (line 11). For now, our
algorithm only produces a black image as shown in Figure 4.2A.

A

B

C

D

E

F

G

Figure 4.2: Evolution of a flow visu-
alization on a three-dimensional vec-
tor field. When source code differ-
ences are displayed between two im-
ages then they are complete.

We adjust the update function to step through
the dataset, which means that every ray is evalu-
ated at every step starting from a near plane until it
either encounters a value in the dataset or hits the
far plane. In both cases, the stabilize function is
called to return a pixel color, which we set to white
if a value is encountered or black otherwise. This
leads to the result shown in Figure 4.2B, which
displays the bounding box of the dataset in 3D
space.

Diderot comes with integrated data types that
ease certain visualization-specific tasks. As such,
our vector field is stored as type field#2(3)[],
which means that it is defined in 3-dimensional
space and it can be continuously derived twice.
While the original input data is discrete, its rep-
resentation in a continuous field means that we
can evaluate the dataset at any given point in space
through interpolation. For this, several predefined
kernels can be applied to the data to interpolate
from a discrete to a continuous vector field. Ini-
tially, we select a B-Spline interpolation kernel.
For Figure 4.2C we calculate the magnitude of
the flow and display it if it is above a set thresh-
old. Figure 4.2D displays the exact same algo-
rithm with trilinear interpolation instead of using
B-Splines. When the user hovers over the pre-
vious image in our development support system,
a unique identifier for both states is sent to the
server, where their source code difference is re-
trieved from the Git repository and sent back to the
client. We can see that the only difference between
both versions is indeed the interpolation kernel. In
addition to the source code, the user can inspect
the visual differences and notice that the B-Spline
interpolation creates a much smoother representa-
tion than trilinear interpolation. By clicking on the
B-Spline image, its ID is sent to the server, the re-

vision’s source code is retrieved and updated on the client side. This way, the user
revoked all source code changes with just a single click and can continue to work on
their preferred version of the algorithm.

For Figure 4.2E, we add a light source and perform a gradient-based shading. With

4

4.1 Exploration of Visualization Source Code 37

the basic visualization in place, we can display other flow features by, e.g., computing
extremum lines instead of the magnitude in the vector field (see Figure 4.2F). While
previously changing the reconstruction kernel from B-Splines to trilinear interpolation
resulted in a less smooth representation, it now completely breaks the flow visualiza-
tion (Figure 4.2G). By showing the visual result for every revision, this faulty state au-
tomatically stands out from other implementations. Having the source code differences
directly available together with their visual impact allows for a structured analysis of
the source code and supports the user in narrowing down the problem. Since the shad-
ing works as intended and the kernel could previously be changed without an issue, the
problem must be due to the new feature computations on top of the interpolated vector
field. Basically, the gradient computations (∇) calculate derivatives of the vector field
which are not continuous if the field was linearly interpolated. Once again, the user
can click on a previously working visualization and continue improving it from there.
In this case, the system will automatically create a new branch and thereby remove the
faulty result from the currently inspected history. All states can still be retrieved by in-
teracting with the Git representation. Having the history available for the comparison
of different states does not only support the visualization expert during the develop-
ment, but is also valuable to students of visualization courses to investigate common
mistakes and build a better understanding of the mathematical and algorithmical basis
of visualization techniques.

Evaluation
To evaluate our system, we performed an expert review [200] in two rounds. First,
we recruited 4 visualization experts and showed them the development history of the
previously discussed flow visualization (Figure 4.2). We provided participants with an
introduction to the system’s functionalities and asked them to complete several tasks
that were designed to explore and use all system features. Participants were asked to
follow a think-aloud approach while we recorded their voice and the screen for later
analysis. Finally, subjects answered a 28-statement post-study questionnaire on a 5-
point Likert scale. Out of the 28 questions, 10 were focused on assessing the overall
system usability through the System Usability Scale (SUS [37]), whereas the remaining
18 questions targeted specific support features of our application.

With an SUS score of 78.75, our system was rated “Good” [21] in terms of general
usability. Participants praised its superior functionality over existing development en-
vironments for creating visualization prototypes, first and foremost the ability to see all
visualization results and to investigate source code differences through a simple mouse
hover. The two main concerns that were raised during our interviews were whether
the system can support other programming languages and its scalability towards larger
software projects. Larger projects may contain multiple source files with many more
lines of code, which lead to larger static scope trees, larger tooltips of source code
differences, and more visual results due to longer development sessions.

In order to address some of these issues, we extended our system to support multi-
ple source code files, C++ and GLSL programming languages, and algorithm caching
for faster execution. We showcased these additions in a new example algorithm with
about 10 times more lines of code. We recruited 4 new visualization experts and fol-
lowed the same protocol as for our previous participants by adjusting the tasks towards
the new algorithm. The SUS score went up to 88.75, which refers to a rating of “Ex-

4

38 Demonstration Cases

cellent” [21]. Working with a familiar programming language, participants considered
the tool more beneficial for their own work and asked for the integration of additional
features. Answers projected that subjects were confident in the system’s ability to han-
dle the development of visualization prototypes, but the development of fully-fledged
software solutions would require a larger set of features from common integrated devel-
opment environments. For a more detailed summary of our evaluation results, please
refer to Paper B.

4.2 Visualization of Dynamic Hierarchies

While the detailed inspection of source code changes and visual changes can reveal
critical lines of code, this task becomes harder as the number of source code changes
grows. For this reason, we display a higher level overview of structural changes in
the source code for the user to find correlations between visual and structural changes.
In our meta visualization, we displayed the code structure as a node-link diagram of
nested code blocks. While the hierarchy was clearly visualized for every state, the
detection of changes between consecutive revisions was left to the user. Without the
necessary visual support, this task can be be ambiguous, as demonstrated in Figure 3.6,
and becomes harder as the source code structure increases.

Figure 4.3: Visualization of the source code structures in revisions A-G from the flow algo-
rithm in Figure 4.2. When displayed as node-link diagrams, changes can be hard to detect
or even be ambiguous. SplitStreams display changes between consecutive structures directly
while showing hierarchies at individual time points in a treemap-like fashion.

We developed SplitStreams as a visualization method that displays the hierarchical
changes over time while still allowing for the inspection of hierarchies at individual
time points. In Figure 4.3 we compare the node-link diagrams from our meta visual-
ization to our SplitStream technique. The displayed hierarchies represent the evolution
of code structures in the algorithm development from Figure 4.2. The stream-based vi-
sualization provides a clear overview of the evolution, showing that the code structure
monotonically increased and that new code blocks were added in states B, C, and E. We
can also perceive that structural changes were only made to the update function from
Figure 4.1, while the stabilize function further consisted of one code block only.

While we demonstrated in multiple examples that our method is effective for small
datasets, we also want to explore the limits of this visualization technique. For this

4

4.2 Visualization of Dynamic Hierarchies 39

reason, we display 34 revisions of the Leaflet [8] repository — a JavaScript library
for interactive geographical maps — as a nested streamgraph and as a SplitStream in
Figure 4.4. The dataset is borrowed from an evaluation of time-dependent treemaps
by Vernier et al. [211]. The nested streamgraph reveals the general evolution of the
data, as well as a recurrent pattern of a large number of similarly structured files being
added and deleted in the exact same position. The introduction of splits yields a clearer
representation of hierarchies, showing that the dark blue color represents the root folder
with, at most times, 4 subfolders. It also reveals that the recurring pattern happens on
the root level, where multiple files and folders are added to the root directory, before
and after the third folder, and deleted in the next revision.

Figure 4.4: Visualization of the Leaflet [8] repository as a nested streamgraph (top) and a
SplitStream (bottom).

While this additional information is a useful improvement over nested stream-
graphs, we can also identify clear downsides of the SplitStreams approach. Given
that streams are split at every point in time, the visualization and perception of flow
becomes more disrupted as the number of timepoints increases. It becomes apparent
that not all of these splits are required, especially at times where the hierarchy stays
relatively constant. Furthermore, although structures become clearer, only a limited
number of streams can be displayed at a time. As the number grows, streams are drawn
in smaller height and their nested structure is less perceivable. As such, SplitStreams
suffer from similar limitations as nested streamgraphs in the number of streams that
can be adequately shown.

Although our visualization was inspired by evolutions of source code structures, it is
genuinely a representation of dynamic hierarchies. As such, it can visualize evolutions
of ancestries, taxonomies, topologies, company staff, file systems, text articles, and
population data, just to name a few. In the following, we demonstrate the application
of SplitStreams to represent the development of a mouse brain over time.

4

40 Demonstration Cases

Figure 4.5: Allen Developing Mouse Brain Atlas [131]. In addition to displaying juxtaposed
2D spatial maps of the mouse brain areas (top) [132], we can display their development through
a stream-based representation. We can inspect the spatial closeness of individual areas in the
maps and gain a better impression of time-dependent growing and shrinking of areas. The
introduction of splits in the stream representation allows for the perception of the complete
ontology integrated into the visualization. We can see which areas are considered subgroups of
other areas due to their functionality (the two displayed representations show slightly different
stages of the mouse brain development).

The Allen Developing Mouse Brain Atlas [2, 131] includes over 20000 genes and
lists them in an ontology based on their spatial position and function. In Figure 4.5,
we display the evolution of brain areas at multiple development stages as 2D spatial
maps [132] and as SplitStreams. Since the size of the brain radically increases in the
early stages, and to ease comparison, we display area heights as percentages of the com-
plete brain area at each stage. We can see that the spinal cord (light grey) takes up about
25% of the brain in the first stage, but quickly declines. Although we lose some infor-
mation about area shapes and their spatial closeness, we can investigate the complete
mouse brain ontology in our SplitStreams representation. We can for example see that
the brain is split into four main parts: the spinal cord (light grey), the hindbrain (pink),

4

4.2 Visualization of Dynamic Hierarchies 41

the midbrain (green), and the forebrain (brown). This ontology can be investigated in
further detail, showing two subareas for the mid- and forebrain, but four subareas for
the hindbrain. Our stream-based representation eases the tracking of dynamic values
for individual areas, provides a quick overview for the comparison of multiple stages,
and integrates the hierarchical structure for in-depth investigations. Our open-source
implementation is available under https://github.com/cadanox/SplitStreams.

Evaluation
We conducted a controlled user study to assess the perceptual differences between one-
dimensional treemaps, nested streamgraphs, and SplitStreams. Since our method dis-
plays node containment similar to one-dimensional treemaps, we hypothesized that
users would understand hierarchies at specific points in time better with SplitStreams
than with nested streamgraphs. Similarly, hierarchical changes over time are displayed
in the same manner in our method as in nested streamgraphs. That is why we hypothe-
sized users to perform better with SplitStreams than with one-dimensional treemaps in
tasks regarding time-related changes.

We recruited 120 participants from Amazon Mechanical Turk who completed 14 ba-
sic analysis tasks. We assessed their performance in understanding hierarchical struc-
tures at a given point in time, understanding changes in hierarchies, and comparing
node value changes. The study followed a between-subject design, where partici-
pants were assigned to one of the three different groups based on the tested conditions:
1) SplitStreams, 2) nested streamgraphs, and 3) one-dimensional treemaps. In the tuto-
rial stage, we provided participants with an introduction to their assigned visualization
type, 3 example trials, and 3 practice trials with explanations on how the correct an-
swer can be achieved. Then, for each task, we showed an image of a dynamic hierarchy
and asked users to provide a numerical answer to a simple question. The hierarchy in-
cluded no more than 20 nodes and at most 5 timesteps. All the images within the study
were displayed by the visualization technique assigned to the user’s condition.

Examples of the task-specific questions include determining the number of children
of a highlighted node (to assess understanding of hierarchies), the number of parental
changes (to assess understanding of hierarchical changes), or the number of nodes de-
clining in value (to assess understanding of value changes over time). Users were al-
lowed to answer multiple times until they answered correctly or hit a 5-minute time
limit. In the middle of the assignment, we added a simple task that served as an atten-
tion check (only one attempt to answer) based on which 18 participants were excluded
from the analysis. We measured users’ time and error of the first response, number of
attempts, and total task time. For each user and each metric, we calculated the average
of all trials within the same task type (hierarchy, change, value).

In our quantitative analysis, we used a Kruskal-Wallis non-parametric test for the
main effect and a Wilcoxon post-hoc test for pairwise comparison. Regarding under-
standing hierarchies at a given point in time, our results show that using the same
shape-based node containment as one-dimensional treemaps, users made less error in
their first attempt, required less attempts, and performed such tasks faster with Split-
Streams than with nested streamgraphs. For understanding hierarchical changes, users
of SplitStreams and treemaps made less error in their first attempt and required less at-
tempts than users of nested streamgraphs. Although we expected nested streamgraphs
to perform better than treemaps in this task, the result could indicate that a better un-

https://github.com/cadanox/SplitStreams

4

42 Demonstration Cases

derstanding of hierarchies also leads to a better understanding of their changes. On
the other hand, both stream-based approaches showed users spending less time on the
first attempt and on completing the task than users in the treemaps condition. This
might indicate that stream-based approaches put less cognitive load on the user than
one-dimensional treemaps.

In conclusion, we provide evidence that SplitStreams combine the advantages of
one-dimensional treemaps and nested streamgraphs and make a good general-purpose
technique for the visualization of dynamic hierarchies. For a more detailed summary
of our evaluation results, please refer to Paper C.

4.3 Aesthetics in Storyline Visualization

When analyzing Ward Shelley’s work, we identified and classified elements of his di-
agrammatic paintings and analyzed his application of shape, color, and shade. By
multiplying stream colors with grey scale fractal noise, we imitate the color irregular-
ities of water color paintings. Additionally, we apply a strong black stroke to stream
outlines, as well as inner and outer shadows that are directed to the bottom left. The
shape of streams is, as previously discussed, determined by the underlying force layout,
whereas individual graph nodes of the streams are, identical to SplitStreams, connected
with Bézier curves.

As a preliminary evaluation of the acquired results, we visually compare our auto-
matically created visualization with the original diagrammatic painting. For this pur-
pose, we manually extract the data elements from Ward Shelley’s work by utilizing the
interaction techniques integrated into our software implementation. By clicking and
dragging along the timeline we create a new stream. When hovering over a stream, we
can adjust its height at that point in time, whereas intermediate heights are calculated
by interpolating between defined height values. By clicking on an existing stream, we
can create labels inside, outside, and on top of streams. Finally, by dragging from one
stream to another, we can create a link between both streams. While a fully-fledged
software suite would provide a good layout out of the box, we need to adjust the pro-
vided parameter sliders until the layout fits our needs. We display the original work
and our digital recreation of Downtown Body in Figure 4.6.

At a first glance, both representations appear rather similar given their choice of
color, style of the timeline, overall shape, and complexity. But it also becomes clear
that more work is required to create a more similar result in terms of overall clarity
of the representation. Although the data is very complex with many links between
streams, Ward Shelley’s work clearly separates individual streams and shows connec-
tion clusters, whereas our force layout tends to create overlaps and more of a "hairball"
of indistinguishable streams in dense areas. This part can most likely be solved by a
better choice of parameter settings for the graph layout. Another point is the position-
ing of labels which are at times far from their connected streams and overlap each other.
Particularly labels inside and on top of streams tend to be stuck to the top or bottom
of the stream instead of filling the available space. Furthermore, some labels turn too
sharply when following the streams curvature, making the text hard to read.

Given that most of our concerns regard the force graph layout and parameter set-
tings, we consider this work a success in the application of an appealing visual style to

4

4.3 Aesthetics in Storyline Visualization 43

Figure 4.6: Top: Ward Shelley’s [16] Downtown Body represents the evolution of art-related
topics, movements, major events, contributions, and representatives of individual times. Bot-
tom: Our attempt to digitally recreate the artistic appeal in Shelley’s work and to apply it to
storyline visualizations in general.

storyline visualizations. We built a foundation to study the effects of aesthetics on user
interaction and perception specific to storyline visualizations and possibly inspire other
researchers to consider similar aesthetic styles for broader visualization design. Our
open-source implementation is available under https://github.com/cadanox/OrCha.

https://github.com/cadanox/OrCha

4

«Sometimes science is more art than science, Morty.»
Rick

55

Chapter 5

Conclusion and Future Work

We have contributed to visualization research through a theoretical analysis of mea-
sures and approaches for visualization assessment. The lack of practical approaches
for visualization space exploration during the development of visualization algorithms
led us to build our own development environment. Our tool is one of the first visu-
alization applications that specifically targets visualization experts as intended users.
We support them during the development process with simple interaction techniques
for the comparison of visual results, source code changes, and parameter settings. Our
meta visualization serves as a novel concept to provide practical means for general vi-
sualization comparison and to investigate correlations between source code and visual
features. The display of a visual history of visualization algorithms follows previous
research on provenance visualization and allows for the analysis of expert user behav-
ior and the inspection of the complete algorithm life cycle. Its representation yields
further benefits for teaching students common mistakes in visualization development
and complex relations between mathematical concepts and visual features.

We developed a new method for the visualization of dynamic hierarchies that com-
bines two existing visualization techniques and thereby presents a time-dependent ex-
ample for parameter-based visualization interpolation. Our technique improves user
perception of hierarchies in a stream-based visualization and contributes to the uncov-
ering of the visualization space by proposing new interpolated visualization designs.
Our quantitative user study evaluates low-level perceptual properties in multiple visu-
alization techniques and adds to the existing understanding of perception knowledge
in the community. By providing an open-source JavaScript library of our visualization
technique, we join the community efforts to improve reproducibility and ease method
integration and comparison for other researchers.

The consideration of parameter explorations and quality metrics is visible through-
out all our work. Our integrated development environment supports the exploration
of parameter changes across visualization algorithms. Assessments of quality can be
made by investigating the high-level source code representation and the visualization
of variance in result images. SplitStreams define parameters for visualization inter-
polation, semantic zoom, and general improvement of visual quality. Finally, organic
narrative charts aim to mimic diagrammatic paintings through storyline visualization
and require the exploration of parameter settings in the force-based layout. Quality
metrics for the assessment of white space and edge crossings can steer the automatic
layout process and yield results of higher visual appeal. The integration of aesthet-
ics into our visualization is in line with previous research efforts on meta-perceptual

5

46 Conclusion and Future Work

properties. By mimicking artistic appeal and providing an interactive visualization for
artists, we bridge the gap between research fields and contribute to both.

In conclusion, we explored the visualization space from theoretical and practical
viewpoints and integrated quality metrics, parameter space exploration, perceptual,
and meta-perceptual properties into our assessment. We see many possibilities to fur-
ther improve the comparability of visualizations and to uncover the visualization space.
When thinking of our visual support system for visualization development as a basis,
additional features could strengthen the understanding of correlations between source
code and visual outcome. Individual lines of code could be identified and highlighted
to display their impact on the visual result. By analyzing the performance of individual
code revisions, performance might be employed as a quality metric to favor one visu-
alization algorithm over the other. When a large number of algorithm histories would
be stored and analyzed, algorithms or code snippets that produce the same or similar
visual features could be recommended as replacements to currently used code bases.
We could build towards a recommender system for visualization experts similar to how
recommendations for visualization pipeline constructions were previously proposed.
The analysis of these histories could further reveal common patterns in visualization
algorithm development and lead to better support tools for experts. By analyzing pa-
rameter impacts across visualizations, the algorithms’ sensitivity towards parameter
changes might lead experts to prefer one technique over the other in particular for in-
teractive systems. By automatically running tests for different parameter values on the
server, users would be released from common trial-and-error routines during develop-
ment and instead be presented with good default values out of the box. Finally, we
can imagine further advances in the investigation of parameter-based interpolations for
example-based sampling of the visualization space, as well as integrations of aesthet-
ics with common visualization techniques to make them more approachable for public
audiences.

5

«To infinity and beyond!»
Buzz Lightyear

5

5

Part II

Scientific Results

5

AA

Paper A

Measures in Visualization Space

Fabian Bolte and Stefan Bruckner

University of Bergen, Norway

Abstract

Measurement is an integral part of modern science, providing the fundamental means
for evaluation, comparison, and prediction. In the context of visualization, several dif-
ferent types of measures have been proposed, ranging from approaches that evaluate
particular aspects of individual visualization techniques, their perceptual characteris-
tics, and even economic factors. Furthermore, there are approaches that attempt to pro-
vide means for measuring general properties of the visualization process as a whole.
Measures can be quantitative or qualitative, and one of the primary goals is to provide
objective means for reasoning about visualizations and their effectiveness. As such,
they play a central role in the development of scientific theories for visualization. In
this chapter, we provide an overview of the current state of the art, survey and classify
different types of visualization measures, characterize their strengths and drawbacks,
and provide an outline of open challenges for future research.

A.1 Introduction

Considering the vast amounts of data involved in many scientific disciplines, it is es-
sential to provide effective and efficient means for forming a mental model of the un-
derlying phenomena. Visualization seeks to provide these means through interactive
computer-generated graphical representations, taking advantage of the extraordinary
capability of the human brain to process visual information. Specifically, the term "vi-
sualization" refers to the process of extracting meaningful information from data and
constructing a visual representation of this information. This process is composed of
three basic stages [99]

1. making data displayable by a computer,

This article was published in Foundations of Data Visualization, Springer (2020).

A

52 Measures in Visualization Space

Figure A.1: 240 different tree visualization techniques [175] – which one should be used?

2. transmitting visual representations to human viewers, and

3. forming a mental picture about the data.

Significant effort has been devoted to the formulation of taxonomies and catego-
rizations of this general process. For instance, Shneiderman [179] introduced a task-
by-data taxonomy, while Tory and Möller [199] focused on the classification of visu-
alization algorithms. In an influential contribution, Munzner [147] proposed a nested
model for designing and developing visualization pipelines, that has inspired a con-
siderable amount of subsequent work. Wang et al. [217], for instance, proposed a
two-stage framework for designing visual analytics systems, while Ren et al. [161]
proposed a multi-level interaction model of goal, behavior, and operation to facilitate
system development with formal descriptions. The multi-level typology of Brehmer
and Munzner [35] distinguishes between the basic questions of why, how, and what, in
order to classify abstract visualization tasks. These types of classifications are highly
valuable resources for visualization practitioners and researchers to steer the design
process and to compare competing approaches.

Ultimately, however, in order to assess the effectiveness of visualization, it is crucial
to know whether or not the mental picture of the data established by a human viewer
is consistent with the original data, and whether or not one specific visualization tech-
nique or parameter setting is more effective than another. Displaying and analyzing data
is of ever-increasing importance in almost all research disciplines. Consequently, the
field of visualization is constantly growing and reliable visualizations are of more and
more importance for domain experts to gain authentic insights. This progress comes
along with a steady growth in diversity and complexity of visualization methods, mak-
ing judgment of their effectiveness and suitability for a certain task difficult. Figure A.1
for instance, which shows 240 different techniques to visualize tree data taken from a
visual bibliography on the topic [175], illustrates the challenges in selecting appropriate
visualization techniques.

Traditionally, visualization techniques and their parameter settings are evaluated by
carrying out user studies which measure their performance for particular sets of tasks.
However, such studies require considerable effort and their design is non-trivial [147].
Their specialized nature also makes it difficult to generalize the outcomes. Further-
more, when developing new visualization techniques, frequently only a small number
of initial users is available, making it difficult to obtain statistically significant results.
The alternative of solely relying on the visualization creator’s judgment, is also scien-
tifically questionable because it often reflects personal preference and may include bias.

A

A.2 Measurement in Science 53

Hence, it is highly desirable to support a visualization process by enabling visualization
creators to conduct an evaluation using objective measures.

In principle, such quality measures could then be used to automatically select and/or
parameterize a visualization from a set of choices according to these measures by using
an appropriate optimization process. Moreover, measures may also inform us about
the structure of the visualization space itself, i.e., they may lead us to deeper insights
into how the phenomenon of visualization works and hence could be of utility beyond
a descriptive or evaluative usage. Hence, questions related to visualization measures
are tightly connected to the bigger effort of specifying a theory of visualization. In this
paper, we survey approaches that seek to enable the systematic analysis of visualization
algorithms and their properties with respect to the underlying data characteristics and
their perceptual qualities. While we cover the significant body of research that has
been devoted to various types of visualization measures, we also specifically look at
approaches that regard the interplay between data, algorithms and their parameters,
and visual perception and cognition as a phenomenon that deserves study in its own
right.

In many disciplines of science, hypotheses are formulated based on empirical data,
and then subsequently developed into models and complete theories of the phenomenon
under investigation. The predictions of these models and theories are then continuously
validated and, once they are supported by sufficient data, are generally accepted as sci-
entific "facts". Importantly, the consequences of these theories can lead to the discovery
of new relationships and insights due to their predictions. Theoretical physics, for in-
stance, heavily relies on the mathematical structure of existing well-validated theories
in the development of more comprehensive models of our universe. There are many in-
stances – for example within the standard model of particle physics – where subsequent
discoveries have been predicted based on structural and mathematical aspects such as
symmetries of the underlying theory. For instance, the famous Higgs mechanism and
one of its important predictions, the Higgs boson, were already described in the 1960s,
but strong evidence for its existence only became available in 2013.

The formulation of measures forms an important first step in the development of
such theories, as they are often the fundamental building blocks from which more com-
plex relationships can be derived. Thus, measures play a central role in the ongoing
search for a more comprehensive theory of visualization.

A.2 Measurement in Science

In philosophy, the topic of measurement in science has been illuminated from many dif-
ferent points of view. Tal [191] gives a comprehensive account of the different schools
of thought and here we will only briefly summarize his considerations in order to pro-
vide additional background. In principle, he distinguishes between the following per-
spectives:

1. Mathematical theories of measurement regard measurement as the mapping of

While a scientific theory can never be proven "true" in a mathematical sense, there are many examples of
well-established theories such as evolution, quantum mechanics, general relativity, etc., that form the basis of
modern science and that are rarely questioned on a principle level.

A

54 Measures in Visualization Space

qualitative empirical relations to relations among numbers or other mathemati-
cal entities. Measurement theory aims to identify the assumptions related to the
use of different mathematical structures for describing aspects of the empirical
world. In particular, it attempts to make statements about the adequacy and lim-
its related to the use of these structures. One of the key insights of measurement
theory is that mathematical structures used for measurement should mirror rel-
evant relations among the real-world objects being measured. For instance, we
could mistakenly assume that an object measured at a temperature of 60 degrees
Celsius is twice as hot as one measured at 30 degrees. However, when expressed
using the Fahrenheit scale, the temperatures of these objects are 86 and 140, re-
spectively. This is because the zero points of these two scales are arbitrary and do
not correspond to the absence of temperature.

2. Realist views consider measurement as the estimation of mind-independent prop-
erties and/or relations. A measurement is regarded as the empirical estimation of
an objective property or relation. The term "objective", in this context, is meant
to signify that these properties are independent of the conventions and beliefs of
the humans conducting the measurement and of the methods used in their execu-
tion. The values of measurements are regarded as approximations of true values,
and measurement itself is aimed at obtaining knowledge about properties and re-
lations, rather than the assignment of values to objects themselves. For instance,
a realist about length measurement would say that the ratio of the length of an ob-
ject to the standard meter has a definite objective value, irrespective of how it is
measured. The measurement itself is merely an approximation of this value.

3. Operationalist views are concerned with the meaning and use of quantity terms.
A realist would argue that these terms refer to sets of properties that exist inde-
pendently of being measured. The operationalist point of view, on the other hand,
is that the meaning of quantity concepts is solely determined by the set of opera-
tions used for their measurement. They view measurement as a set of operations
that shape the meaning and/or regulate the use of a quantity-term. For example,
length could be defined as the result of concatenating rigid rods, but it could also
be defined by timing electromagnetic pulses. A strict operationalist would distin-
guish these two into distinct quantity concepts such as "length-1" and "length-2".

4. Information-theoretic accounts view measurement as the gathering and inter-
pretation of information about a system. Measuring instruments are regarded
as "information machines" that interact with an object in a given state, encode
that state into a signal, and convert this signal into an output. The accuracy of a
measurement is dependent on the instrument as well as the level of noise in the
environment. Information-theoretic accounts of measurement were originally de-
veloped by metrologists, and hence are practically oriented and tailored towards
evaluating and improving the accuracy of measurement standards. As such, their
connection to more philosophical considerations is less explored.

5. Model-based accounts view measurement as the coherent assignment of values
to parameters in a theoretical and/or statistical model of a process. According
to model-based views, measurement consists of two levels: (1) a process involv-

A

A.3 Types of Visualization Measures 55

ing interactions between an object of interest, an instrument, and the environ-
ment; and (2) a theoretical and/or statistical model (i.e., an abstract representa-
tions based on simplifying assumptions) that describes this process. Hence, the
central goal of measurement is to assign values to the parameters of these models
such that they satisfy certain criteria such as coherence and consistency.

While these considerations are important and relevant lines of philosophical inves-
tigation, for the purposes of the discussion here we will largely gloss over these par-
tially subtle distinctions. Nevertheless, we will see that some of these views are more
prominent in the visualization domain than others. Many of the visualization qual-
ity measures are constructed in an operationalist manner, providing different means to
measure the same property of a visualization. Several phenomena in visualization have
been described by applying communication models from information theory, and sev-
eral theoretical models try to explain, e.g., perceptual processes in the human visual
system or the visualization process as a whole. Mathematical theories of measurement
and realist views have received less attention in visualization research. As this topic
gains more attention, we expect a more explicit exploration of the philosophical under-
pinnings of different approaches. In the following sections, we will describe different
types of measurements in visualization and how they can be combined to build a better
understanding of visualization as a research field in the future.

A.3 Types of Visualization Measures

There are numerous different aspects of the visualization process that one can set out to
quantify. Partially, the boundaries between different types of measures can be fuzzy, but
in the following we will attempt to characterize some principal categories of measures
that have been investigated.

A.3.1 Measures of Perceptual Characteristics

The measurement of perceptual characteristics of visualizations aims to mimic low-
level processing of visual stimuli in the human perceptual system. Essentially, the idea
is that by – at least partially – modeling and simulating the early processing stages of
the perception pipeline, we can predict how particular visual elements influence the
interpretation of a particular visualization by a human observer.

Significant efforts have been devoted to understanding the effectiveness of differ-
ent visual variables for encoding quantitative and qualitative data in the visualization
literature. For example, Cleveland and McGill [53] ran a well-known series of graphi-
cal perception experiments to measure accuracy in comparing values and to derive the
rankings of encoding variables that still form the basis for many visualization design
decisions. Similar types of experiments have also been used to compare different types
of charts and their results have been employed to aid the automatic construction of
visualizations [139, 140].

A major early contribution to the study of visual perception was made by the Gestalt
School of Psychology. Developed in the early 20th century, the intent was to understand
the principles behind how humans acquire and maintain meaningful perceptions of the

A

56 Measures in Visualization Space

world given its complex and chaotic nature. The main idea maintains that the human
perceptual system employs a notion of "gestalt" (German for shape or form) that it
uses to organize and interpret its inputs. By further investigating this basic thought,
psychologists were able to establish a series of Gestalt principles of perception, which
are still respected today as accurate descriptions of visual behavior. Since then, several
works have set out to describe these and related observations and their effects in a more
formal manner.

At the most basic level, we can look at physiologically-based models which typ-
ically idealize neural behavior using mathematical functions. The response of reti-
nal ganglion cells, which have a center-surround behavior, can be described by a
difference-of-Gaussians function which contains a narrow excitatory center within a
larger inhibitory surround [162]. A Gabor function, mathematically defined as a 1D
sinoid within a 2D Gaussian envelope, has been shown to be a good approximation of
the edge patterns which the primary visual cortex (V1) neurons are sensitive to [60].
Li [133] presented a model of contour perception in the primary visual cortex. While
it does not include retinal processing or edge pattern recognition, it focuses on lateral
connections in the visual cortex and how they can give rise to contour integration phe-
nomena. Grossberg and Williamson [221] proposed a more detailed physiologically-
based model which includes center-surround processing and Gabor-like pattern match-
ing of neurons. It divides the primary visual cortex into several layers associated with
particular behaviors such as contour enhancement and convergence of neural activ-
ity. Pineo and Ware [154] combine aspects of the models by Li and Grossberg and
Williamson. They realize a difference-of-Gaussians retinal response and a V1 Gabor
response. Furthermore, their approach is specifically tailored towards the viewing of
data visualizations, which – they argue – tend to be viewed in an exploratory manner.
Hence, they seek to model perception in the moments after viewing, before steady-
state activity is reached. This also allows them to make the computational evaluation of
the model sufficiently fast to be embedded in an optimization loop. Thus, in addition
to their model of low-level perception, Pineo and Ware [154] also present an appli-
cation of their perceptual model for 2D flow visualization. They argue that the brain
generates its high-level understanding of a visualization from the activity of low-level
neurons, and erroneous low-level perception thus has a degrading effect on this high-
level understanding. Based on this reasonable assumption, they propose a predictor
for the perceived direction at a point in visual space from the activity of edge selec-
tive neurons that surround it. Likewise, they predict the perceived speed of flow from
the activity of blue-yellow neurons (which correspond to their chosen color mapping)
weighted by the distance of the receptive field to the point being predicted. These mea-
sures are then used in a hill climbing optimization process to adjust the parameters of a
streaklet-based visualization.

Such perceptual measures focus on the low-level processing of visual stimuli in the
human perceptual system such as preattentive processing [82]. Hence, they are primar-
ily concerned with how basic visual encoding variables, such as position, length, area,
shape, and color, and the interaction of the variables (e.g., integrable or separable), in-
fluence the efficiency of low-level perceptual features such as visual search, change
detection, and magnitude estimation [28]. While physiological models taking into ac-
count neural response are scientifically attractive due to their "first-principles" nature,
an obvious challenge is to scale them up to more informative aspects of higher-level

A

A.3 Types of Visualization Measures 57

perception. As is the case in many areas of science, it is far from trivial to connect mul-
tiple scales in a meaningful manner while preserving important practical aspects such
as computational feasibility. For this reason, the modeling of higher-level phenomena
often ignores some of the more detailed aspects. In the context of perceptual measures,
the concept of saliency [97] is a prominent example for this.

In general, visual saliency models assess the features of an image to predict which
areas of that image will draw a viewer’s attention. While they are typically inspired by
the structure and function of the human visual cortex and are designed to be "biologi-
cally plausible", most approaches make a number of simplifying assumptions. Several
practical saliency models have been proposed that, while inspired by basic principles
such as the center-surround mechanism, forego more detailed modeling of the neural
response and instead take a more phenomenological approach. Saliency models can
be categorized as models of bottom-up visual attention. Bottom-up visual attention is
drawn to regions that are distinct from their surroundings with respect to their basic
visual features such as contrast, color, or motion. Top-down visual attention, on the
other hand, is driven by the viewer’s goals, expectations, and experience. It is hence
allocated voluntarily based on the viewer’s task and prior knowledge [55, 155]. This
makes saliency an attractive basic task-agnostic measure for investigating how viewers
read a visualization in principle and thus saliency-based measures have garnered the
interest of visualization researchers.

Kim and Varshney [112], for instance, presented a method that enhances the
saliency of selected regions in volumetric data which they validated using an eye-
tracking study. Lee et al. [130] applied the concept of saliency to surface meshes and
showed how the measure can be used for targeted simplification as well as viewpoint
selection. Jänicke and Chen [98] proposed an approach which uses a saliency-based
metric to measure the mismatch between data-space feature maps and the visual repre-
sentation of the data. While most types of saliency models are tailored towards natural
scenes, Matzen et al. [144] developed a method specifically targeted at abstract data
visualizations.

Overall, perceptual measures are a useful tool for determining and/or predicting
which parts of a visualization will be most prominently seen by a user. Combined with
an appropriate way to characterize relevant features in the data, they can be utilized
to detect potential mismatches between the importance of regions in data space and
their perceptual prominence in the final image. However, at present only low-level
perceptual processing can be feasibly taken into account and higher-level aspects or
even cognition are still beyond the reach of current approaches.

A.3.2 Task-Oriented Quality Measures

In contrast to lower-level perceptual measures, the goal of quality measures is to in-
form about the performance of a visualization technique with respect to a particular
well-defined task assumed to be important for the overall goal of the visualization. As
discussed in the survey by Behrisch et al. [28], a particular characteristic of such mea-
sures is that they do not explicitly consider the user. Instead, they often attempt to
heuristically quantify the presence and/or extent of an "anti-pattern", i.e., an assumed
known defect or undesirable characteristic of a visualization. These types of measures
are commonly referred to as "quality metrics" in the visualization literature. However,

A

58 Measures in Visualization Space

Figure A.2: Behrisch et al. [28] analyzed and categorized quality measures from around 250
papers in visualization. These mid-level measures are mostly specific to the underlying data,
task, and visualization technique.

as pointed out by Behrisch et al. [28], this is a somewhat misleading term as "metric"
has a precise meaning in mathematics with well-defined properties (i.e., non-negativity,
identity of indiscernibles, symmetry, and the triangle inequality) which need not nec-
essarily hold in all cases. Thus, we adopt the more neutral term "measure" which does
not have these implications.

As the recent state-of-the-art report by Behrisch et al. [28] focuses on these types
of measures (classified as "mid-level perceptual quality metrics" in their work), we
will only briefly summarize well-known approaches and refer the reader to their com-
prehensive survey for further details. Given their specialized nature, it makes sense
to discuss task-oriented quality measures according to the type of visualization they
are designed for, as shown in Figure A.2. For instance, in scatterplots and scatterplot
matrices "scagnostics" – based on an idea by Tukey and Tukey [205] – have been in-
troduced as an approach to identify anomalies based on attributes of their shape and
appearance. These measures themselves form a multi-dimensional space which can be
explored in a scatterplot matrix in order to identify outliers in the form of unusual scat-
terplots. Wilkinson et al. [220] later presented graph-theoretic methods to implement
the same approach using a set of measure categories (outliers, shape, trend, density, and
coherence), each composed of multiple numerical measures. For example, the shape of
scattered points in a plot can be described by the following measures: convexity, skin-
niness, stringiness, and straightness. Bertini and Santucci [29, 30] proposed a model
for visual clutter in scatterplots based on an estimate of colliding points vs. available
space. They subsequently derived a quality measure that aims to quantify whether the
relative data density is preserved when considering the represented density in the plot.
It is also common for quality measures to be defined implicitly, for example as part of
a layout algorithm. For instance, Byron and Wattenberg [43] presented an approach
to optimize the appearance of stacked graphs by using measures such as deviation and
wiggle.

Task-oriented quality measures have arguably received the most attention in the field
of visualization, as they often tend to encode – with varying degree of fidelity – known
best practices or common shortcomings specific to a particular class of visualizations.
In essence, they can be seen as (partial) formalizations of design recommendations, and
thus tend to be quite practically oriented. Typically being grounded in well-established

A

A.3 Types of Visualization Measures 59

principles in visualization makes these types of measures semantically meaningful and
expressive, providing a sound basis for optimization as well as for the comparison of
different but related algorithms. A potential downside of this applied nature of task-
oriented quality measures is their limited generalizability.

For instance, when rendering streamlines in flow visualizations, there exist different
seeding strategies to define the starting points and number of streamlines. The overall
goal is to display all features in the flow without introducing clutter. This goal intro-
duces a trade-off between increasing the number of streamlines to cover all features, but
decreasing it for better clarity. While this optimization is crucial for streamline visual-
izations, it is so specific that it can hardly be applied to any other type of visualization.
This is true for many task-specific quality metrics. As a consequence, whenever a new
visualization technique is discovered, new task-oriented quality measures need to be
developed to optimize the specific aspects of this visualization. It would be desirable
to define general measures that express the quality of a visualization independent of its
type and allow for their comparison.

As an example, edge crossings can be optimized for multiple visualizations, i.e.,
graphs, parallel coordinates, and storylines. This is because all of these techniques
utilize edges (or links) as a visual encoding for aspects of the underlying data. The
user’s ability to read a chart is influenced by the number of edge crossings as well as
the angle at which they cross, and there seem to be higher-level perceptual aspects of
such visual embeddings that increase the cognitive load on the user. If we manage to
define these aspects instead of task-specific features, then we might be able to form a
more general theory about the perception of visualizations. This would not only allow
us to compare different techniques on an equal basis, but further enable the prediction
of how new visualization techniques will perform given their defined visual mapping.

A.3.3 Structure-Oriented Measures

In contrast to task-oriented measures, this class attempts to quantify general structural
elements of the visualization process. More specifically, structure-oriented measures
aim to express in a – at least in principle – measurable form fundamental characteris-
tics of the visualization process itself. Classical examples for these types of measures
are Tufte’s data-to-ink ratio, as well as his lie factor [204]. The former describes the
proportion between the amount of pixels used to present data and the total amount of
pixels, whereas the latter describes the ratio between the size of a data value and the
size of its corresponding visual element. Both express desirable relationships between
the data and its visual representation, but are not tied to any particular visual encoding.
On the contrary, they aim to describe general qualities of visualizations, and thus play
a particularly important role in considerations towards a theory of visualization.

Mackinlay [139] was one of the first to discuss the expressiveness and effectiveness
of visualizations as general means to compare and choose different visual designs. He
describes expressiveness as the ability to encode all facts of a dataset without introduc-
ing additional facts that are not in the data. Effectiveness, on the other hand, further
depends on the user’s capabilities to read a certain visualization. Having the user in-
troduced as a deciding factor for the effectiveness of a visualization requires a detailed
understanding of the human visual system and, although a lot of research has been con-
tributed towards this goal, we still do not possess a sufficiently complete model that

A

60 Measures in Visualization Space

would allow us to predict this on a general level. We are therefore further reliant on
empirical results of user studies to describe the perceptual capabilities of visualization
users.

Demiralp et al. [61] evaluated visual mappings in general by assessing how well the
input data is represented by visual elements. They describe visualization as a function
that maps from a domain of data points to a range of visual primitives. They further
argue that the same measures that can be found in data, like symmetry and distance,
should be reflected in the visual elements. In this sense, we could encode pairwise dif-
ference in data space as pairwise perceptual difference in color, shape, size, or others.
One problem with this approach is that perceptual distance is not given in most visual
spaces and needs to be estimated empirically. Additionally, we often utilize several
visual encodings at the same time, and it is unclear how they interact and potentially
interfere. The authors argue that when two visual spaces are combined, a measure for
that space can be constructed from the individual measures. When acquiring percep-
tual measures for all kinds of visual spaces, we could then create a standard library to
validate the pairwise distances between elements in all kinds of visualizations.

Inspired by these considerations, Kindlmann and Scheidegger [114] argue that dis-
tance functions and metrics have limits, since for example partial orders are not sym-
metric. They instead developed an algebraic framework for describing symmetries
between manipulations in data space and their resulting consequences in visualiza-
tion space. From this, they derived three principles that should be true for a mapping
from data to visualization, i.e., unambiguous data depiction, representation invariance,
and visual-data correspondence. In short, the visual mapping should make sure that a
change in the data is reflected by a corresponding change in the visualization, while
changes in the data representation (e.g., the specific data structures used in the imple-
mentation) do not affect the visualization, and significant changes in data should result
in noticeable changes in the visualization. Given some examples, it becomes clear that
not always all of these principles can be met. The visualization designer needs to be
aware of certain shortcomings and make sure that the right principle is respected given
the task at hand. In this work, the authors introduced a uniform description of different
design choices. They adhered to a mathematical model that describes the process of
visualization based on its structural properties. They further mention that user studies
can be utilized to test perceptual distinguishability and thereby complement mathemat-
ical models. The conjunction of evaluated visualizations and mathematical models can
help to make statements about visualizations which are not yet evaluated through user
studies. While this approach still relies on some notion of perceptual distance, it is
notable as it does lead to measurable predictions that in principle can be verified with-
out reliance on user studies. For instance, it can be tested without user involvement
whether a significant change in the data leads to no change in the visualization. This
opens up the door for a set of "unit tests" for visualization, which could verify at least
some objective characteristics fully automatically.

Information theory has been a major influence in the search for solid theoretical
foundations in visualization. Silver [182] employed the concept of object orientation
to conceptualize the visualization process, arguing that the definition and abstraction of
features into objects, and their interactions in local regions, allows for a better measur-
ability of phenomena and understanding of their evolution. Abstracting the features of
a scientific domain into such a concept allows for generally applicable measurements

A

A.3 Types of Visualization Measures 61

such as volume, diameter, and curvature and provides a basis for objective comparison.
Jankun-Kelly et al. [103] proposed the P-Set model to describe a user’s interactions
as choosing a parameter based on a previous parameter set, and applying the new set
to derive a transformed visualization result. As demonstrated by Liu et al. [136], dis-
tributed cognition can be utilized as a theoretical framework in visualization. Purchase
et al. [158] analyzed which existing theoretical models can be applied to visualization
and provided suggestions for their integration. In particular they considered visualiza-
tion under the light of data-centric predictive theory, information theory, and scientific
modeling. Chen and Jänicke [49] applied information theory to describe phenomena in
visualization with communication models. They argued that many problems and fea-
tures in visualization can be explained by similar phenomena from information theory
which can be applied to evaluate visualizations on a more general level. Xu et al. [229]
followed a similar idea to evaluate visualizations by measuring the amount of infor-
mation that is transported through the visual channels and applied this framework to
flow visualization examples. Wang and Shen [216] complemented this work by addi-
tional principles with a particular focus on scientific visualization. Category theory and
semiotics were employed by Vickers et al. [212] to facilitate an improved understand-
ing of visualizations in practice and to describe a well-formed visualization process.
The conceptual framework of visual multiplexing by Chen et al. [50] facilitates the
study of different mechanisms for integrating and overlaying multiple pieces of visual
information.

Based on these information-theoretic considerations, Chen and Golan [47] intro-
duced a comprehensive cost-benefit model of visualization, defining cost as the search
space for answers. They utilized the big O notation to classify tasks accordingly. Pre-
senting a fact or piece of information has cost O(1), observations as in "What hap-
pened?" require the user to read all data points, which has a complexity of O(n). When
looking into correlations, causes, and other complex relationships, we must consider a
broader spectrum of relations, ending up at O(nk). And, finally, when we want to derive
a model for visualization, taking into account all parameters and algorithmic steps, the
complexity might be O(n!). They further introduced a cost function, which can be de-
rived from energy, time, or monetary measurements necessary to find the answer. They
defined benefit as a gain in certainty about the information. Based on these definitions,
they derived an incremental cost-benefit ratio that describes the amount of effort re-
quired to compress the information towards the point that the user’s initial question can
be answered and a decision can be made. Based on this formulation, it is in principle
possible to use an optimization process to discover the best visualization method.

Bruckner et al. [38] proposed a model to analyze the directness of interaction tech-
niques in visualization. They considered the different mappings involved in the visu-
alization process, i.e., the mapping from data space via the visualization space to the
output space (e.g., a monitor or a head mounted display), as well as the subsequent per-
ceptual and cognitive processes involved in generating the user’s mental model. They
then investigated the parallel process of interaction, starting from an intended action
(based on the user’s mental model) via the manipulation space (i.e., a physical inter-
action device such as a computer mouse) to the interaction space and finally back to
the data space. Based on this model, they introduced a measure for the degree of in-
directness of an interactive visualization setup based on how invertible the involved
mappings are and demonstrated how this measure can be practically realized.

A

62 Measures in Visualization Space

Figure A.3: Comparison of plain and embellished bar charts [183]. Even small visual mod-
ifications, like using triangular instead of rectangular bar charts, will increase the error rate.
Embellished representations can increase the memorability of the visualization.

Compared to task-specific quality metrics, describing visualizations on a general
level not only provides us with a better understanding of visualization as a scientific
research field, but further allows us to make predictions about non-evaluated, or even
not yet developed visualization techniques. For instance, when the interaction with the
visualization does not coincide with gathered knowledge about interaction directness,
the user is likely to experience a discrepancy between their intended and executed ma-
nipulation. One major question is how the sheer number of theoretical frameworks and
models can be combined and integrated into one coherent knowledge base. Similar to
other research fields like physics, where theories about electricity and magnetism have
been combined into a larger theory of electromagnetism, visualization could gather
greater insights by combining existing theoretical frameworks, leading to a fundamen-
tal strengthening of the research field as a whole.

A.3.4 Meta-Perceptual Process Measures

So far we have primarily examined well-established and generally accepted measures
and models to evaluate visualization with the goal of optimizing task execution time,
easing data exploration, or increasing the gained insight. But when visualization is
utilized as a knowledge source for the general public, we can formulate other equally
important goals for visualization design. In education, we might be interested in cre-
ating memorable knowledge or engage students in working with a visualization. In
commercial scenarios, aspects such as aesthetics and impact, or even the profitabil-
ity of a visualization can be the main goals of a specific design. We summarize these
higher-level aspects as meta-perceptual process measures that aim to characterize ad-
ditional qualities that go beyond what are typically considered to be primary desired
properties of a visualization in the research community. In some sense, such measures
aim to capture the attributes of a visualization from the point of view of other domains,
such as art or economics.

For instance, Healey et al. [84] conducted experiments to evaluate how hue and
orientation allow users to accurately estimate features in visualizations through preat-
tentive processing. The question was if a short glimpse at a visualization can convey
the general message, and if it can, which factors influence this capability. While Skau
et al. [183] showed that even small visual embellishments increase the error rate when
reading bar charts, Bateman et al. [24] found that visually embellished visualizations
are more memorable than plain charts. Figure A.3 shows two visual mappings for bar

A

A.3 Types of Visualization Measures 63

charts, as well as their embellished counterparts. Borkin et al. [33] investigated which
elements of visualizations make them memorable. They showed, for example, that
color, human recognizable objects, high visual density, and unique design improve the
ability of humans to remember a visualization. Furthermore, memorability was inde-
pendent of subjects’ context and biases.

Aesthetics of a visualization are hard to measure and in most cases subjective.
Tractinsky et al. [202] found a strong correlation between aesthetics and usability,
which suggests it as an important factor for designing and evaluating visualizations.
Lau and Moere [129] proposed a model for aesthetics in information visualization, see-
ing aesthetics as the degree of artistic influence on the data mapping, rather than as a
measure of appeal. Filonik et al [66] summarized several possible measures of aesthet-
ics for information visualization from the literature and concluded that many aspects
of this phenomenon remain unexplored. Harrison et al. [80] ran a user study and found
correlations between certain measurable visual features and visually appealing aesthet-
ics. They found that colorfulness and visual complexity have a positive correlation to
perceived aesthetics, but depend on gender, age, and level of education.

Saket et al. [165] summarized and reviewed several of these meta-perceptual criteria
in the field of visualization. They described engagement as the amount of time spent
with the visualization, proposed a model for measuring enjoyment [167], and found
that pictorial representations and embellished visualizations increase enjoyment [166].
Their work concluded that memorability, engagement, and enjoyment are complex as-
pects of visualizations that are hard to quantify, and require further study. It is, for
example, not yet clear how interactions affect these measures, and many more factors
that influence a user’s experience might exist.

A somewhat different class of measures is related to non-cognitive aspects of visual-
ization. For instance, van Wijk [208] proposed a model to measure the "profitability" of
a visualization in an economic sense. In this model, the cost of a visualization (e.g., de-
velopment cost and users’ time to understand the visualization) is considered in relation
to the return on investment in the form of knowledge gain. The value of a visualiza-
tion can thus be increased if many people use it regularly, obtain valuable knowledge,
and spend less time or money to make a decision. Unfortunately, knowledge gain is
a rather broad and vague concept, so more precise notions are needed to quantify this
aspect more accurately.

Compared to previously discussed approaches, meta-perceptual process measures
have so far mostly been evaluated in rather narrow scenarios, providing guidelines for
visualization design. More quantitative measures that would allow for the comparison
of different visualizations with respect to the outlined qualities have not been explored
extensively. Furthermore, the fact that some qualities like aesthetics are not necessar-
ily directly related to common visualization goals such as the generation of insight,
may have lead some visualization researchers to discard them as irrelevant. However,
we believe that it is important to also consider the impact of visualization in a broader
context, and hence find that the measurement of such properties is an important and
worthwhile endeavor. Parallels may be drawn to other fields – for instance, organiza-
tional performance was once mostly viewed in terms of its economic characteristics, but
organizational psychology has shown that measures of occupational health and well-
being such as job satisfaction can be important predictors for the financial success of a
company.

A

64 Measures in Visualization Space

A.4 Towards a ”Bigger Picture”

As can be seen from previous examples, there is still a long way to go towards quan-
titative statements about visualizations in general. Figure A.4 provides a high-level
overview of the discussed measure categories with respect to their practicality as well
as their ability to describe general phenomena. Many of the presented quality measures
are specific to a certain type of visualization, like wiggle in streamgraphs, or scagnos-
tics for scatterplots. Counting the number of edge crossings in a visualization is an
example that can be applied to several different visualization techniques, like graphs,
streamgraphs, and parallel coordinate plots, but is still specific to visualizations that
utilize visual links for their layout. It could be argued, that a meter can measure width,
height, and length in the real world, because every object has to have these properties,
given their underlying molecular structure. Visualizations, on the other hand, utilize a
number of visual properties to encode varying information, even encoding semantically
similar information with different visual encodings. From this point of view, it is no
surprise that different subareas in visualization have developed vastly varying quality
measures. Kosara [123] looks at many of the best practices followed in visualization
and encourages researchers to build a better, well justified basis for knowledge about
visualizations.

Some properties, like clutter, empty space, and overplotting are more general and
can be used to characterize visualizations on a more fundamental level. But their effect
on the users’ perception varies and is therefore often evaluated through user studies.
Several examples, as for instance discussed by Harrison et al. [80], have shown that
measures which by themselves do not make a statement about quality (e.g., colorfulness
and visual complexity) can be transformed into quality measures, when evaluated with
a user study. The users’ perception can be measured or quantified and thereby operate
as an indicator for quality. The fact that this type of evaluation can be performed
for visualizations in general means that there might be a common ground that allows
for comparability. While Behrisch et al. [28] provided an excellent summary of task-
dependent quality measures, a survey of existing studies would be able to provide an
overview of what these studies have in common and on how specific they are to their
individual task and visualization types.

In order to compare not only different visual encodings, but visualization types, we
would require a standardized way of evaluating common properties. For instance, dif-
ferent visualizations might apply the same color map and when asking users of different
visualizations the same questions we would acquire comparable answers. One major
problem of this approach is that visualizations are, among other things, data-, task-,
and user-dependent. While a given dataset might create clutter in one visualization, it
might not in another, and the opposite can be true for yet another dataset. Some visu-
alizations are better in giving an overview, while others provide detailed insights, and
the questions asked in user studies are often task-dependent to investigate exactly these
specific strengths or weaknesses. When asking task-independent questions in order to
keep the results comparable, insight on these specific differences might get lost. Lastly,
visualizations can be targeted towards a certain audience, being more specific for ex-
perts, or more intuitive for the broader public. For this reason, participants of a user
study are often chosen from the specific audience, introducing a bias towards the back-
ground and knowledge the participants have. If the goal is to create comparable results,

A

A.4 Towards a "Bigger Picture" 65

Figure A.4: Overview of visualization measures regarding their ease of being measured and
their capability of describing visualizations as a whole. While quality metrics are easy to
measure, they are in most cases too specific to find applicability in generalized observations.
Meta-perceptual measurements try to capture more general, higher-level phenomena, but re-
quire user studies to be quantified. Although they are applicable to a large range of visual-
ization techniques, their generated insight follows specific intents (like making a visualization
memorable). Perceptual studies try to understand the human visual system and could, if fully
understood, explain many phenomena in the analysis of visualizations. At present, however,
where only the low-level visual processing is well understood, their applicability is limited to
rankings of visual channels and encodings for rather isolated situations. Theories about visu-
alization are among the most general and descriptive approaches for describing visualizations.
Although some of them propose varying measures for the quality of a visualization and allow
for their comparison, they are in many cases still too abstract to be applied in practical use
cases.

A

66 Measures in Visualization Space

the distribution of participants would need to be as general as possible, introducing ad-
ditional problems like participants not having the background knowledge required to,
e.g., benefit from a visualization in the medical domain. Independent of the mentioned
shortcomings, we might be able to come up with some general statements that provide
insight into the users’ mental model and opinion about the visualization given their
data and purpose they operate on, similar to the System Usability Score introduced by
Brooke [37]. The interpretation of such a score, as in this case demonstrated by Ban-
gor et al. [22], can lead to a description of the general performance of a visualization,
and bring us closer to a common basis for comparability across fields.

Perceptual studies in particular provide more general means by analyzing the hu-
man vision and ranking different visual channels based on their capability of present-
ing information. They build a fundamental understanding of the basic principles of
visualization and are applicable to all kinds of visualization types. So far, we merely
understand low-level perceptual processes. This fact limits the applicability of percep-
tual studies to make general statements about visualizations and predict their usability.
Meta-perceptual metrics, on the other hand, try to evaluate higher-level features inde-
pendent of the specific visual encoding. Aesthetics, engagement, and enjoyment have
a major impact on the way users interact with the visualization and on how the gained
knowledge is memorized. Despite several efforts taken in this direction, these measures
have mostly been explored in information visualization and require further research in
other fields like, e.g., scientific visualization. When we have a better understanding
of how these phenomena behave in different visualization types, we can build a more
general theory and learn from the insights gained. In addition to already mentioned
measures, proxy measures can be used to quantify properties that are otherwise hard
to observe. The idea is to find a measurable property that strongly correlates with the
phenomenon we want to analyze.

As a reflection of a discussion panel on how to pursue theoretical research in vi-
sualization, Chen et al. [48] described different evaluation approaches and how they
can contribute to a theoretical foundation. Taxonomies classify objects of interest, such
as data types, visual encodings, user tasks, or interaction techniques into groups and
subgroups. Ontologies then describe additional relationships between these different
groups and entities, providing a more detailed picture of the underlying interactions.
Guidelines describe the quality of a certain approach and make statements about which
practices should or should not be used in order to achieve a desired outcome. The
authors argue that guidelines need to be evaluated and refined over time, as well as
transformed into quantitative laws when applicable. VisGuides [14, 63] provides a
platform to openly discuss guidelines in visualization and allow for their continuous
refinement. When a guideline has shown to be useful over the years, it can be es-
tablished as a principle. Conceptual models describe a general idea or understanding
of how certain processes or systems work in order to reason about their structure and
functioning. For example, a perceptual model describes how we think the human vi-
sual system works, which allows us to derive conclusions and best practices, although
we have not fully understood this system yet. Such models can further be supported by
mathematical frameworks, like information theory. In our opinion, the combination of
quantitative measures and a mathematical framework can form the basis of more gen-
eral models of visualization. These can then be used to reason about causal relation-
ships and make testable predictions. We believe, that the main goal of our community

A

A.5 Conclusion 67

should be to unify existing approaches into larger theories about visualization that in-
corporate acquired knowledge into a more general understanding of the subject itself.
Sacha et al. [164] demonstrated how perceptual and theoretical frameworks, as well
as guidelines, can be combined into a model for understanding the process of knowl-
edge generation. We should continue this line of thought to further integrate quality
and meta-perceptual measures into theoretical frameworks and to create general mod-
els of the visualization process. By continuously verifying and refining these models,
we can continuously advance visualization theory and strengthen the research field for
greater accomplishments to come.

A.5 Conclusion

Other research fields have shown how incremental refinement and verification of theo-
retical models can lead to major leaps in knowledge and understanding. In visualiza-
tion, we have seen several promising attempts towards a theoretical foundation, as well
as greater acknowledgement and presence of theoretical papers. We can learn from
other scientific disciplines and bear in mind that the formulation of a theory and defi-
nition of measures in visualization do not need to be perfect from the very beginning.
Practical barriers, like not being able to compute a measure due to technical limitations,
should not prevent us from suggesting and formulating such concepts. Many important
milestones in scientific history, like Einstein’s general relativity or Feynman’s quan-
tum electrodynamics, have been postulated much earlier than they could be verified.
Similarly, Fermat’s Last Theorem took 358 years from its proposition to a mathemat-
ical proof. Such theories allow us to state our assumptions, formulate predictions,
and develop technological advances, even if they are not well-verified or "proven" yet.
Evaluation efforts can be made not only to assess specific visualization techniques or
applications, but to empirically test theories. Based on such continuously validated and
refined theories, we are optimistic that we will eventually be able to evaluate and com-
pare visualization techniques on a more general level, predict how users will perceive
and interact with the visualization, and develop new visualization techniques for better
decision making.

Acknowledgments

The authors would like to thank all participants of the Dagstuhl Seminar for con-
structive and fruitful discussions. This work was supported by the MetaVis project
(#250133) funded by the Research Council of Norway.

A

BB

Paper B

Vis-a-Vis: Visual Exploration of Visualization
Source Code Evolution

Fabian Bolte and Stefan Bruckner

University of Bergen, Norway

Abstract

Developing an algorithm for a visualization prototype often involves the direct com-
parison of different development stages and design decisions, and even minor modifi-
cations may dramatically affect the results. While existing development tools provide
visualizations for gaining general insight into performance and structural aspects of
the source code, they neglect the central importance of result images unique to graph-
ical algorithms. In this paper, we present a novel approach that enables visualization
programmers to simultaneously explore the evolution of their algorithm during the de-
velopment phase together with its corresponding visual outcomes by providing an au-
tomatically updating meta visualization. Our interactive system allows for the direct
comparison of all development states on both the visual and the source code level, by
providing easy to use navigation and comparison tools. The on-the-fly construction of
difference images, source code differences, and a visual representation of the source
code structure further enhance the user’s insight into the states’ interconnected changes
over time. Our solution is accessible via a web-based interface that provides GPU-
accelerated live execution of C++ and GLSL code, as well as supporting a domain-
specific programming language for scientific visualization.

B.1 Introduction

The process of developing a visualization algorithm typically involves a trial-and-error
approach consisting of the repetitive task sequence of writing code, compiling the pro-
gram, and comparing the visual result to previous outputs. This is common practice
in research and industry for fixing bugs or developing new features. Existing develop-
ment tools ease the software development on a general level by providing visual insight

This article was published in IEEE Transactions on Visualization and Computer Graphics (2020).

B

70 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

into the source code structure and the application’s performance. Development tools
specifically designed for visualization algorithms could further improve the user’s ex-
perience by providing insight into the visual changes created by the source code [128].
An overview of the visual results created at different points in time can ease the compar-
ison of features in the algorithm. Source code changes and changes in the visual result
can be investigated as a unit, instead of being considered individually. When teaching
visualization algorithms to students, free exploration of the source code’s evolution and
its resulting visual outcome can build a deeper understanding of the underlying techni-
cal details and problems that occur during the development of such algorithms. Some
recent tools [13, 170] provide a live view of the application’s result and thereby relieve
the user from the common compile-and-run cycle. While several approaches present
a visual history of the source code evolution [197, 215, 223], none of them connect
the source code to its graphical output. The development of visualization techniques,
in particular for prototyping and education purposes, could greatly benefit from a cou-
pling of the source code to its visual result, making it easier to pinpoint when artifacts
are introduced or whether a specific method is sensitive to noise in the data.

In this paper, we present a novel approach for visualizing an algorithm’s evolu-
tion for a general purpose (C++, GLSL) and a domain-specific programming language
targeted at scientific visualization algorithms. We provide tools for investigating all re-
visions at different levels of detail with side-by-side comparisons for visual results, a
visual representation of the source code’s structure, difference images, and source code
differences. We further apply user-defined algorithmic parameters to all states of the
evolution to ease the comparison task with respect to parameter changes. We present
results in an automatically updating and interactive environment, that enables direct
state comparison and navigation throughout the whole development process with in-
stant state switching for free investigation. Our system provides visual support of the
development process in an interactive visual analysis tool for visualization researchers
and practitioners. The tool can further be utilized in the education domain to teach vi-
sualization algorithms and their detailed differences to students, building a fundamental
understanding of the correlations between algorithmic and visual changes, and a strong
basis for future visualization research.

Our main contributions can be summarized as follows:

• We introduce a novel approach for the concurrent live visualization of the evolu-
tion of scientific visualization source code and its visual output.

• We provide automatic revision management with interactive state switching and
visual guidance.

• Algorithm parameters can be automatically mapped to user interface elements
and their effects can be explored interactively on the entire revision history.

• The system is implemented as a web-based client-server environment enabling
the development of GPU-based visualization algorithms on any client.

B

B.2 Related Work 71

B.2 Related Work

Our system provides support for the development of scientific visualization prototypes
and benefits from on-the-fly compilation, live previews, automatic revision manage-
ment, and parameter management. While our general approach of combining these
features into a single development environment is novel, many visualization techniques
exist for individual features.

Terminology
A visualization developer (user) writes visualization source code to describe an algo-
rithm. Instead of considering full-fledged visualization solutions, which integrate the
whole visualization pipeline (reading and processing data, creating a render window,
etc.) we mainly focus on the visual mapping and rendering part. We use the term state
to refer to a revision of the source code in a version control system. Every state creates
a visual result (output) based on a given parameter set. We create a meta visualization,
used in the same sense as Bertini et al.[31] – a visualization of visualizations, to show-
case the evolution of an algorithm.

Software Visualization
Software visualization has been a prominent topic over many years and many powerful
methods have been developed. They visualize software projects at different granular-
ities, such as the source code level, the software structure, or the runtime behavior of
the program [20].

SeeSoft [65] represents a file as a column and each line of code (LOC) as a fixed
size row. Marcus et al. [142] reduce the required space of this visualization by repre-
senting each LOC as a square and appending them to fixed length rows. They further
highlight the syntactical structure of the source code by coloring each square depending
on its nesting level or keywords of the language. The visualization of source code his-
tory is likewise a prominent research field in software visualization [145]. DeVis [232]
summarizes the number of LOCs that have been added, deleted, or modified in a pie
chart and provides this information over time in a spiral layout. CVSscan [215] high-
lights structures in source files and aligns the LOCs across time to create a history
view. Telea and Auber [197] take this approach further by directly visualizing the
evolution via a flow graph. Holten and van Wijk[92] show how this approach can be
enhanced by edge bundling. Chronicler [223] builds a node-link diagram from the
source code structure and connects correlating nodes in a flow graph to display the
evolution of hierarchical structures. The entire structure of a software project can be
visualized to gain an overview of all existing classes, their relationships [59] and their
evolution [54, 111, 127, 219]. Additionally, the authors of developed classes and their
collaborations can be displayed [70, 150]. The runtime behavior and performance of
an application can be visualized to detect issues or bottlenecks within the code [95].

This kind of visual analysis can be generally applied to, but is not specifically de-
signed for, source code of visualization algorithms. In our approach, we take advantage
of the visual output that is specific to visualization algorithms and provide tools to sup-
port the intrinsic needs of visualization developers.

B

72 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

Visualization Pipeline
Existing frameworks like VTK [174], ParaView [17] and MeVisLab [118] enable the
construction of and insight into the pipeline of a scientific visualization process. Each
pipeline consists of several modules featuring algorithms with their respective inputs
and outputs, including operations from data space, through visualization space, into im-
age space. These kinds of frameworks provide visual support for the rapid prototyping
and analysis of visualization pipelines. They simplify the task of comparing individual
pipelines against each other and finding proper parameter sets to run them with. In con-
trast, our system provides visual support for the process of prototyping a visualization
algorithm, which could then be utilized as a module within one of these frameworks.

Parameter Management
Many systems provide support for finding a suitable parameter set for a given visualiza-
tion. Design Galleries [143] generate multiple output images from dispersed parameter
sets to provide an overview of the parameter space and enable the easy identification
of desirable results. Image graphs [138] display the parameter changes between dif-
ferent output images and spreadsheet-like interfaces [101] allow for the investigation
of parameter effects and their interplay. Sedlmair et al. [177] evaluate existing work
on visual parameter space analysis and divide problems, strategies, and tasks into a
conceptual framework.

All these approaches analyze and compare the effect of different parameter sets for
a given visualization with the goal of finding one suitable set. In contrast, we utilize
one parameter set at a time to analyze its effect on different visualizations in order to
inform the user about aspects such as sensitivity to parameter changes during different
phases of development.

Visual Provenance
Visualizing the evolution of a workflow is closely related to the notions of prove-
nance [89] and graphical histories [85]. They provide important information for im-
proving the user’s understanding, the product’s quality, and ensuring reproducibility.
Several tools, including Kepler [19], Triana [195], and work by Pimentel et al. [153], fo-
cus on the history of user interactions and modifications in data, meta data, information
systems, and workflow. Such systems have shown that a version tree and thumbnails
can be utilized to improve a user’s exploration capabilities [45, 186]. VisTrails [26] is
a system specifically designed for visualizing provenance in the visualization pipeline,
allowing for the comparison of several visualizations for different data and parameter
sets. It therefore addresses many of the issues found in the process of constructing a
visualization pipeline for a given task and data set, that we face in the context of devel-
oping a visualization algorithm. However, our approach starts at an earlier level, even
before the visualization methods are known, and visualizes the provenance of the al-
gorithms themselves by allowing for the investigation of the development process. We
thereby provide a support system for visualization developers instead of users of exist-
ing techniques.

Live Execution & Notebooks
An increasing number of powerful online tools provide live previews for the output
of code in different languages. Notebooks like Jupyter [117] and Observable [11] al-

B

B.3 Overview 73

low for the definition and individual execution of code snippets, interlaced with text to
provide explanations of the code. This leads to a tighter coupling of source code and
its output for interpreted languages. For compiled languages, on-the-fly previews, as
seen in Overleaf [12] for LATEX, are often only provided for the output of the complete
source code. ShaderToy [13] allows for the editing of GLSL code and combines a live
view of the result and predefined inputs to create a powerful environment for prototyp-
ing shader effects. Vega-Lite [170] is a high-level grammar for interactive information
visualization that provides an online editor with instant visual feedback and extensions
for visual debugging techniques [90]. Literate visualization [226] builds an evolution
of visualizations and explanations for their design choices on top of that. None of these
solutions, however, provide means for exploring the evolution of the code and its re-
sults over time.

B.3 Overview

Visualization has been proven to be invaluable for many applications in vastly vary-
ing fields, by improving the user’s insight into complex data [79]. It is therefore re-
markable that we, as visualization researchers and practitioners, make limited use of
advanced visualization tools in what is often a considerable part of our daily work – the
development of visualization algorithms. We want to improve the current situation by
providing an interactive tool for visualization developers to support the investigation of
their work. Our first approach in this direction is aimed at the prototyping of such al-
gorithms and we see great potential for our application being utilized in the education
domain for teaching visualization algorithms to students.

B.3.1 User and Task Requirements

In order to improve the visualization researcher’s development process, it is important
to first understand their problems and needs. We therefore take a look at a programmer’s
standard workflow, visualized in Figure B.1. During the development process a user
typically (partially) implements a visualization algorithm, compiles the source code,
and tests if the developed program generates the expected visual result. If it does,
the current state can be manually stored as a backup and extended until it supports all
required features. If an intermediate result is incorrect or undesired in any way, the
source code must be inspected to locate and fix the issue (debug), recompiled, and
tested again. This time-consuming process must be repeated until the result appears
free of issues. If the identified issue cannot be located or cannot be fixed, a previously
stored state must be restored. Even if the source code is free of issues, the implemented
feature might turn out to be unsuitable for the given task and should be replaced by
another feature. This again requires the user to continue from a previous state.

Many visualization algorithms define several parameters which significantly influ-
ence the visual result [100]. Aspects such as the robustness against small perturbations
of these parameters typically need to be continuously verified. While unit tests and
other forms of testing are meant to fulfill a similar purpose, they are often only em-
ployed once a set of required features is clearly defined and already implemented in

B

74 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

Start

End

program

test

compile

debug

good?

yes

no

finished?

yes

no

yes

storage

fixed?

no

retrieve

store

debug?

no

yes

Figure B.1: Development workflow. During the development process, a user programs a visu-
alization algorithm, compiles the source code, and tests the outcome. Bugs are typically fixed
in an iterative manner. The whole process is normally performed separately for each feature
of the implementation. Functioning features can be manually stored, and restored when the
current state is not satisfactory.

form of a prototype. In research, in particular, we often lack the detailed specification
needed to clearly specify such tests from the very beginning. Based on previous ob-
servations [128] and our own analysis of a typical visualization developer’s workflow,
we can identify a set of tasks that are regularly performed by the user and could benefit
from additional support:

T1. Compiling the visualization source code to investigate the visual result regarding
functionality
T2. Comparing visual results from different revisions
T3. Understanding the impact of several implemented features on the visual outcome
T4. Locating the parts of source code that are responsible for a visual feature or bug
T5. Switching between source code states
T6. Finding suitable input parameter values

These tasks are partially supported by common programming environments, but
could in many cases be performed in a more efficient manner. Compilation of the source

B

B.3 Overview 75

code typically needs to be manually initiated, thus breaking the developer’s focus on
the implementation of the algorithm. Several visual results can only be compared by
individually compiling and investigating the corresponding states, which have to be
manually stored and restored.

Although the source code creates the visual features in the algorithm’s result, these
two aspects are never directly shown in relation to each other. The source code that is
responsible for a given feature can thus only be located by reading and understanding
the source code. This task is only accelerated if the user knows in which order the
features were coded. The same issue occurs when trying to find a bug in the source
code. By the time the user manually initiates the compilation process, a lot of code
might have been written and is suspect to having introduced the problem.

In order to compare features and source code, the user must be able to switch be-
tween different states. This task is frequently performed to compare functioning to
malfunctioning code, but not sufficiently supported by commonly used development
tools. As bugs or other issues are often only discovered when inspecting the visual
results, current revision management tools, which provide guidance by highlighting
source code differences and listing manually-entered commit messages, are a subopti-
mal solution.

Finally, the analysis of input parameters and their effects on different stages of the
development process is only poorly supported by current tools and typically requires a
cumbersome trial-and-error process.

B.3.2 System Design

Looking at the outlined shortcomings of commonly used systems with respect to the
discussed user tasks, we are able to identify several key aspects that would greatly assist
visualization developers:

• Visualization for investigating the visual results of several different states at the
same time (T2, T3)

• Visualization of the states’ source codes in relation to their visual features (T3,
T4)

• On-the-spot switching between several states, visually guided by the states’ visual
results (T5)

• Automatic compilation of source code in the background (T1)

• Automatic and transparent storage of source code states (T2, T5)

• Interactive elements for on-the-fly value definition of input parameters (T6)

The desire to provide an integrated solution that addresses these points lies at the
heart of our system’s design, which is illustrated in Figure B.2. We aim to assist the
programmer in focusing on the implementation of the algorithm’s features, understand-
ing and comparing the impact of different choices on the visual result, and allowing for
their comparison. We provide further support for the localization of issues and the
automation of tedious tasks.

B

76 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

explore
interact

compare

source code

visual result code structure

evolution of
visual result

and code
structure

user

compile extract

visualizevisualize

read / write

Figure B.2: System overview. When a user writes visualization source code, its structure can
be extracted and its execution provides a visual result. Following this procedure over time and
combining both components into an interactive meta visualization, provides insight into the
evolution of the developed algorithm.

Our system was designed to flexibly support multiple back ends. It supports C++
and GLSL code as general-purpose programming languages, as well as Diderot [113], a
domain-specific language (DSL) specifically designed for the development of scientific
visualization algorithms. While C++ and GLSL have been utilized in many visualiza-
tion applications for possible performance gains, DSLs provide benefits in usability
and expressiveness, while reducing the complexity of the algorithm’s source code with
efficient syntax. Diderot specifically provides support for visualization-specific data
and features, leading to compact and readable code. It further allows for parallel ex-
ecution of the developed algorithm and thereby provides faster visual feedback. All
examples and results in the remainder of this paper are either generated using Diderot,
or a combination of C++ and GLSL code.

When analyzing the planned support functionalities to build a meta visualization
which enables the exploration of a visualization’s evolution, it becomes clear that our
system requires access to the algorithm’s source code and its visual result. Many vi-
sualization algorithms further depend on the definition of a proper parameter set to
produce a meaningful output. We want to apply the same parameter changes to sev-
eral different states of the source code evolution to compare their impact on the visual
result. Therefore, input parameters need to be extracted from each algorithm to check
which parameters can be applied. The toolchain of a programming language needs to
meet two requirements to be supported by our visual analysis system:

• Facilities for extracting the visual outcome from the algorithm’s execution

• Definition of input parameters to steer the execution and influence the runtime
environment of the algorithm via external tools

When these conditions are fulfilled, the programming language can be integrated
into our system and benefit from all the additional functionality.

B

B.4 Exploring Visualization Source Code 77

Figure B.3: Meta visualization. (A) The revision tree of all stored states is shown as a node-
link diagram, where every revision is represented as a node and a link between two nodes
illustrates the evolution from the upper to the lower node. The number of links at the bottom
of each node represent the number of branches evolved from this state. States and their links
are colored in blue for the current branch and grey for other branches. The current state is
highlighted in orange and collapsed nodes are highlighted in green. (B) The static scope tree
outlines the source code’s structure and is shown for each state of the current branch. Each
node represents one structural block of the source code. A link between two nodes represents
that the scope to the right is nested inside the scope to the left. (C) The comparison of visual
changes is presented in a juxtapositional view. For each state of the current branch, the visual
result created by the source code is displayed as an image from a user-defined viewpoint. For
states which are collapsed in the revision tree representation, result images are positioned next
to each other. (D) A comparison image shows the visual variance between all result images
inside such a collapsed node.

B.4 Exploring Visualization Source Code

In order to transcribe our main concept into a usable interface, we provide a meta vi-
sualization displaying the information of all visualizations created during the develop-
ment process. All methods, their main ideas and comparison to alternative approaches,
will be covered in the following. The resulting meta visualization, produced from an
exemplary development process, is depicted in Figure B.3.

B.4.1 Automatic Revision Management

A central goal of our approach is to enable and support the comparison of several states
during the development of a visualization algorithm. Many of our design choices draw
inspiration from the VisTrails [26] approach for visualization pipelines. In order to
access a given revision and all its information at a later point in time, it needs to be
stored. Many applications make the user responsible for storing their progress by en-
abling them to manually save the current state. This approach only provides access
to the last development state and is prone to system failure, whereas smarter systems
create automatic backups. In practical software development, version control systems
like Git [6] or SVN [3] are typically employed as they store the entire revision his-

B

78 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

tory. However, the process of storing an individual revision still needs to be triggered
manually.

We internally utilize a version control system (Git) and draw inspiration from mod-
ern tools such as Google Docs that automatically track the version history of a docu-
ment without user intervention. Instead of constantly interrupting their workflow, users
can simply focus on the development process. We automatically track and store every
code edit and create a new revision whenever the corresponding source code compiles
successfully. All automatically stored states are displayed to the user in a node-link di-
agram to keep transparency over the process and visualize the development progress
(Figure B.3A). Each node represents a development state and a link between two nodes
describes the evolution from one state to the other, or, in other words, that the successor
node (child) was created by modifying the preceding node (parent). Interacting with
the visualization allows for intuitive switching between development states and further
eases the comparison task. If the user switches to a previous state, which by definition
already has a child, and continues coding, a new branch is created and the compiled
state is represented by a new node.

B.4.2 Visualization of Algorithm Evolution

After having described our visualization of the revision tree, we will in the following
describe the other visual components which compound our meta visualization: the vi-
sualization of source code structure, the visual result, and the difference image.

Result Image
Writing source code is an error-prone task and mistakes in the program can result in
failure or incorrect visual results. The visual output can serve as a compact descriptor
of the functionality and features integrated into the given source code state. It can be
utilized to easily identify different feature sets and to add, remove and exchange them.
Furthermore, having an overview over existing features can reduce redundant code and
effort in reimplementing features. For each compilable revision, we execute the pro-
gram and display the result image (Figure B.3C) aligned with the corresponding node
of the revision tree and a representation of the generating source code (Figure B.3B).

Source Code Structure
While there are many different techniques for visualizing source code structures, as dis-
cussed in section B.2, we focus on its outline in the form of a static scope tree (SST).
This representation highlights the nesting scopes (block structures) of the source code
and is sufficiently compact while still conveying the main structural aspects of the code.
In both programming languages featured in this paper, nesting scopes are defined by
opening and closing curly brackets. The SST is visualized by a node-link diagram
(Figure B.4B), where every node represents a code block and a link exists between two
nodes, if one block is nested within the other. The tree depth represents the nesting
level. If several source code files exist, the SST is computed for each of them, and
their root nodes are linked as children to a new root node which represents the files’ di-
rectory (Figure B.4C). While the SST provides a high-level overview for source code
comparison, the actual differences between two given revisions are computed and vi-
sualized in a tooltip to highlight their code changes in detail.

B

B.4 Exploring Visualization Source Code 79

A B C

Figure B.4: Static scope tree. (A) Pseudocode. (B) SST extracted from A. (C) SSTs extracted
from three source code files (from top to bottom: C++ source, GLSL, C++ header) and com-
bined under a mutual root node.

Compression
Since every compilable development state is taken into account, the meta visualization
can become very large. We therefore compact the revision tree based on a predefined
comparison measure to enable the representation of several successive states within a
single collapsed node. A node and its parent are represented by a single node, if both
states are equal with respect to the chosen comparison method. The representing node
inherits the children of all collapsed nodes and the visual results of all states being com-
bined in such a node are displayed next to each other. If desired, the user can manually
expand and collapse the node for detailed investigation. In a first iteration, we define
the comparison measure as the similarity in source code structure. We assume that a
structural change describes a major change in the source code. All successive nodes
that represent states with the same source code structure are bundled in our default ab-
straction. The corresponding SST is only displayed once per bundle. One can easily
think of other possible comparison measures, like defining thresholds for visual differ-
ences in the result image, number of code changes or performance differences. The
question of which compression method is best suited for the exploration of visualiza-
tion source code evolution is left open for future research. Alternatively, letting the user
tag states of interest for comparison could be a good alternative to automatic compres-
sion approaches.

Result Comparison
The identification of subtle visual differences between the results of multiple develop-
ment states can be challenging. For this reason, we provide an additional comparison
view (Figure B.3D) that shows the per-pixel variance of the individual results for states
collapsed within a single node. The resulting image is black if all compared images
are exactly equal. The higher the color difference between the images in a certain lo-
cation is, the brighter is this part of the computed image. Our approach of showing
visual results next to each other and visualizing the small differences in an additional
view benefits from the advantages of both a juxtaposition and explicit encoding [73]. It
enables the user to identify visual differences on both the large and small scale. Com-
bining the visual differences with the changes in source code and aligning them along
the algorithm’s evolution, provides the visualization developer with an enriched insight
into the process that would require significant effort to be achieved with common de-
velopment tools.

B

80 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

B.4.3 Parameter Management

Many visualization algorithms define several input parameters, which can significantly
alter the visual result. Investigating the impact and interplay of individual parameters
on different stages of an algorithm is a non-trivial task. Simple systems supporting
this task can modify certain parameters on the application level and visualize the result
directly. Some of them store the visual result of several parameter settings to ease the
task of comparing different parameter sets. When the user wants to test if the change of
a parameter has different impact on individual features of their implementation, these
systems provide little support. The user would need to run the available tool for each
state of interest, change the parameter settings in every instance, and compare across
these instances.

Our system provides the possibility of freely exposing all input parameters of a
state and mapping them to individual type-specific elements of the interface which pro-
vide convenient interaction facilities for parameter changes similar to common property
sheets, using simple syntactic constructs specific to the host language. Based on this
mechanism, we are further able to provide more intuitive, specifically tailored interac-
tion elements for common parameters in the visualization domain. The virtual camera
is one of the most common parameter sets in three-dimensional visualization, typically
specified using an interaction technique such as the Arcball [180]. It controls the rota-
tion of the camera around an object and can be easily expanded to support translation
and scaling. We integrate this well-known technique via a plugin mechanism into our
system. The plugin defines three keywords for the camera’s position, look-at point and
orientation. When the user utilizes these keywords as names for the corresponding pa-
rameters in the algorithm’s source code, they are automatically coupled. We display
an enlarged version of the current state’s visual result for detailed exploration, that can
be seen in Figure B.5. Interacting with the view automatically runs the algorithm with
the new parameter set and updates the result view on-the-fly. This approach expands
the visualization algorithm by a direct, interactive component without any extra effort.
Our system provides the ability to automatically and transparently make other such
interaction facilities available for developers to directly integrate into their algorithm.

To support the task of comparing the visual outcome of different parameter settings
on several states, we perform the parameter change on all visual representations of
states within the current development branch. This means that, for instance, moving the
camera of the current state will automatically update all other states to the same camera
position. The user can then explore whether states with different feature sets undergo
different degrees of visual change. If a parameter is not present in a certain state, it
is simply ignored. This semi-automatic approach enables the user to investigate the
impact of a parameter change across all implemented feature sets. It further provides
insight into the sensitivity of different features to certain parameter changes and into
the robustness of investigated parameters in terms of their compatibility with multiple
features.

B.4.4 System Interactions

Although all described methods can be utilized by themselves, they further benefit from
being visualized next to each other and interconnected by user interactions. To provide

B

B.4 Exploring Visualization Source Code 81

Figure B.5: The Live View enables direct user interaction including rotation, transformation,
and scaling to investigate the visual result of a given state in detail. These interaction function-
alities are automatically integrated, as soon as the developer utilizes the predefined keywords.
The newly chosen viewpoint is automatically applied to all other visual results to enable con-
sistent comparison between states.

a better picture of the possible interactions, we present an overview of our graphical
user interface in Figure B.6.

The visualization of our revision management system, the evolution of source code
structure, and the evolution of visual results all communicate progress over time. Their
respective components are each related to certain states of the development process.
For every compiling state of source code, a node in the revision graph is displayed,
the source code’s structure is visualized, and a view of the visual result is shown in an
image. All three visual representations are aligned along a common time axis. This
approach further emphasizes the evolution from one revision to the other in a clearer
manner by following the time axis from top to bottom, as shown in Figure B.3.

We display additional overlays for a more convenient comparison of several states.
When hovering over a result image, the system displays a tooltip which includes all
source code differences between the hovered and the current state. To easily find these
differences in the code editor, all lines of code that need to be removed and added to get
from one state to the other are highlighted and their line numbers are displayed. This
interaction mechanism allows for an in-depth inspection of the source code changes.
The current state can be easily switched by clicking either on the result image of a
state, or its node representation in the revision tree. Both elements, as well as the
corresponding static scope tree, are highlighted, so that the user always knows which

B

82 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

Figure B.6: Graphical User Interface. The interface of our application is inspired by common
Integrated Development Environments. Every view can be individually positioned and resized
based on the user’s preferences by easy drag&drop interactions. The code editor is shown
to the left and includes the source code of the current state’s visualization algorithm. The
whole evolution of the algorithm, up to the current state (highlighted in orange), is presented
in our meta visualization. The top right view would normally display the visual result of the
current state, but since the user hovers over one of the states in the meta visualization, its result
is shown instead, enabling easy comparison between the two. Additionally, the source code
differences between the hovered and the current state are directly visible in the overlaying
tooltip. The bottom right view displays the compilers output after each compilation attempt.

state they are currently working with.
Since the revision tree collapses nodes if their source code has the same SST, it is

necessary to provide the user with tools to investigate all available states. A right click
on one of the collapsed nodes will expand all hidden nodes and branches. In order to
keep the visual components in alignment, the SSTs and result images of the currently
shown branch will be repositioned. Since such a displacement might confuse the user’s
mental map, hovering over a SST highlights all result images that share the respective
SST. Following the same principle, hovering over a comparison image highlights all
result images that were taken into account to compute it. The expanded nodes in the
revision tree can be manually collapsed again by performing a right click on any of
the nodes which share the same SST. Clicking on a node in the revision tree which is
not within the current branch will switch branches and update all views to visualize the
meta information of the selected branch. All nodes of the currently visualized branch
are marked in blue in the revision tree, while all other nodes are colored in grey. It is
important to keep these non-active branches within the visualization, because otherwise
there would be no interaction available to activate them again.

When hovering over a result image, it is enlarged for easier inspection. It provides
the user with a preview of what is to be expected, when switching to that state. Contin-

B

B.5 Implementation 83

uous alternation of hovering over two images allows for easy comparison and detection
of visual differences. To detect even the smallest differences, the comparison image is
also enlarged when being hovered.

B.5 Implementation

Our application is divided into a server and a client component, each benefiting from
different programming languages and execution environments, whose technical details
will be briefly outlined in this section. We provide a short description of the compo-
nents’ functionality, communication, and the events being triggered by user interaction.

When setting up a machine for software development, many tools, like compilers,
libraries, or an IDE, need to be installed. The chosen tools and developed source code
often vary based on the underlying operating system or hardware used. Finding the
right tools for a given task can be very time-consuming, especially for beginners in
software development. We therefore chose a client-server architecture to relieve the
user from setting up the environment needed for compiling and executing the source
code on the client side. It enables us to run a large amount of compilations in the
background without affecting the user’s workflow. Our solution can therefore even be
used on low-end clients.

In order to make our application widely available, we implemented the client side
as a web application. In addition to standard web technologies (HTML5, CSS3, and
JavaScript), we utilize the Ace Web Editor [1] as environment for writing visualization
source code, and D3 [34] to create node-link diagrams within the meta visualization.
The window layout is based on Golden Layout [7] and is inspired by common In-
tegrated Development Environments enabling the developer to add, delete and move
modules based on their personal preferences. The visual presentation of source code
differences is handled by the diff2html library [5]. Our server is written in C++ and
handles the compilation of source code, storage of states, visualization of results, and
the communication with web clients. The communication channel between client and
server is based on the JSON-RPC protocol. Data is requested via AJAX calls and ex-
changed in the JSON format. We further use Git [6] as the version control system by
utilizing the functionality provided by the libgit2 library [9]. The current version of our
application supports Diderot [113] as a programming language specifically designed
for the visualization domain, as well as C++ and GLSL. While Diderot code is com-
monly manageable within a single source file, C++ and GLSL code can become quite
large. We provide multi-file support to split up source code into several files. In order to
support additional programming languages, the system requires access to a correspond-
ing toolchain, the definition of commands to build both a library and an executable from
the source code, and access to the result images. Everything else is handled automat-
ically, e.g., error messages from the toolchain are forwarded to the client and source
code is stored in Git.

In the beginning of the development session, the user chooses a programming lan-
guage. Based on this choice, the server prepares the appropriate compiler and runtime
environment to compile and execute all incoming source code. When the user writes
code in the editor, our system waits until the user stops typing for a certain amount of
time (default 1.5 seconds), before sending the code to the server and compiling it to an

B

84 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

application. The static scope tree is automatically extracted during the build process.
If the compilation was successful, the source code is stored in the Git repository and
the compiled executable is cached for future execution. The visual result is sent to the
client along with the current state of the revision graph and the SST of the source code.
If the compilation fails, an error message is sent to the client. When the user interacts
with the live view, the visualized state is rerun with the new parameters on the server
side and the results are sent to the client. The same parameter set is used to run ev-
ery stored revision of the current branch and thereby updates all visual results, which
are then sent to the client in an asynchronous manner. In order not to introduce any
decrease in performance compared to common development environments, where the
user would manually start the compilation process, we prioritize the compilation and
update of new source code over older revisions. We realize this by utilizing a prior-
ity queue, where compilations are assigned the highest and updates the lowest priority.
When two operations in the queue have the same priority, we perform the latest request
first. For further performance improvements, older compilation requests in the queue
can be dropped when a newer revision was successfully compiled. Parameter updates
across the revision tree are only performed when the hardware resources are available.
If the user wants to switch to another state in the revision graph, the server finds the
given state by its unique ID in the Git repository and sends the source code to the client.
In the same way, source code differences are computed between two revisions on the
server side and sent to the client for display. When managing several source files, the
user can switch between these files by clicking the corresponding tab in the code edi-
tor. We check if the file contains the content of the currently selected state and perform
an update if necessary.

B.6 Usage Examples

Having described the individual components of our system and how their capabilities
and interconnections employ our conceptual methods, we now want to illustrate the
system’s advantages over commonly used systems in real-world scenarios. As interac-
tive processes are inherently difficult to capture in still images, we encourage the reader
to also refer to our supplementary demonstration video. We present the implementation
of two usage scenarios of our approach: a three-dimensional flow visualization and a
visualization with stylized line primitives. We highlight the specific integrated features
and discuss how they enhance the user’s experience during the development process.

B.6.1 Flow Visualization

The user’s task is to visualize specific properties of a vector field, starting from flow
magnitude, over extremum lines, to normalized helicity. Since the given vector field
has three spatial dimensions, the visual result shall be three-dimensional as well, so a
ray casting algorithm will be used. In order to easily follow the development process
and to get a better impression of how our system’s support functionality looks like, we
display all intermediate results of the now following description in Figure B.7.

The process starts with an initial state which only consists of Diderot’s boilerplate
code and a black image as its output (Figure B.7A). With the three-dimensional result

B

B.6 Usage Examples 85

Figure B.7: Visualization of a visualization source code evolution. (A) Initial state. (B) Im-
plement ray tracing and find volume. (C) Implement flow visualization based on flow magni-
tude. (D) Test trilinear interpolation instead of B-spline interpolation. The comparison image
highlights minor differences. (E) Implement shading. (F) Change the flow feature from flow
magnitude to extremum lines. (G) Test trilinear interpolation instead of B-spline interpolation.

B

86 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

in mind, we add camera parameters to the algorithm, cast a ray at every pixel of our
camera’s resolution and display data in white, when it is hit by a ray (Figure B.7B).
At this point already, by utilizing the predefined parameter names for the camera’s po-
sition, look-at point and up-vector, our application will automatically assign values to
these parameters, allowing the user to zoom, pan, and rotate around the data set and
select the best possible viewpoint. In order to gain a better impression of the flow, we
compute the flow’s magnitude and only display it for values above a constant thresh-
old (Figure B.7C). At this point, we start experimenting with the interpolation kernel,
which is responsible for creating a continuous field from our given input data (Fig-
ure B.7D). Diderot has convenient built-in mechanisms to change this reconstruction
method. Investigating the result images clearly shows a much smoother flow when
using B-spline interpolation compared to trilinear interpolation. The comparison im-
age highlights subtle differences to the user. Now that the flow is already visible, we
can improve shape perception by adding a light source into our environment and per-
forming gradient-based shading (Figure B.7E). Since the basic visualization algorithm
is functioning, we can start to integrate additional flow features. Visualizing surfaces
around extremum lines and vortex structures is easily done by modifying the computa-
tions over the corresponding vector field (Figure B.7F). After these additions, we notice
artifacts when experimenting with different interpolation methods (Figure B.7G), both
in the case of trilinear interpolation and even when using Catmull-Rom splines. By
hovering over the images of previous states, a tooltip reveals our last code changes and
thereby highlights the different vector field computations. We check the maths and
consider our algorithm as correct. The comparison to even earlier states ensures us that
no drastic changes were made and the issue must be related to the interplay between
flow features and the reconstruction kernel. Also, our basic algorithm seems to be cor-
rect, since the visualization of the flow magnitude does not show any problems. The
only difference and possible cause of the issue in this scenario therefore seems to be
the gradient computation. If we, as a user, had the necessary background knowledge,
we would know that trilinear interpolation does not provide the continuity necessary
to compute appropriate derivatives. Our application was therefore able to reveal the
complex correspondence between interpolation kernels and gradient computation by
displaying the visual results and source code differences in an explorable manner. Ex-
posing such high-level relationships without explicitly knowing the reasons for their
existence, requires the human-in-the-loop for further sense-making, but provides a hint
to in-depth understanding of the algorithm’s underlying functionality. The user can
now further compare the results of functioning states and visual differences in all the
implemented functionality, choose the most suitable version for their task and add fur-
ther features if necessary. When investigating the evolution of the static scope tree over
the whole process, it is noticeable that the source code structure expanded until shading
was implemented, but stayed constant afterwards. This provides us with an indication
that all main features being considered during this session require the same fundamen-
tal code structure in order to function, but mainly differ in the mathematical formulae
being computed over the flow field.

B

B.6 Usage Examples 87

B.6.2 Stylized Line Primitives

In our second example, we focus on efficiently drawing lines in a three-dimensional
scene, by rendering them in 2D, but shading them as if they were 3D tubes [187]. Ad-
ditionally, several styles can be applied to the lines to represent different features in the
data. It differs from our previous example by being implemented in C++ and GLSL,
and thereby utilizing multiple files – a C++ header, a C++ source and a GLSL file.
Furthermore, the underlying source code and the corresponding source code changes
contain many more lines of code (665 LOCs for the final state) than the previous ex-
ample being written in a domain-specific language (72 LOCs for the final state). This
scaling in data size comes with increased compilation times, bigger static scope trees
and larger tooltips. The evolution of the algorithm’s development is shown in Fig-
ure B.8. Since some of the source code changes being made are quite extensive, we
focused on the most salient parts.

We skip the initial development involving data handling and the setup of the ren-
dering process to focus on the evolution of the visualization techniques. We therefore
start out with source code which already renders a red quad strip for each line in the
data, following its curvature (Figure B.8A). All quads are, based on the user’s view-
point, computed and rendered in every frame. The definition of specific parameters in
the code automatically provides the same interaction handling for changing the view-
point as demonstrated in the previous example. In order to visually separate the lines
from each other, we plan to add a halo to each line. We increase every quad’s width
by a margin and check for each fragment being drawn, if it lies within the line’s width
or exceeds it. If it exceeds the line’s width, we paint the fragment black as a halo,
otherwise we set its color to red (Figure B.8B). The visual difference becomes imme-
diately apparent and provides us with a better understanding of the lines’ paths and
depths. In the next step, we want to give our lines a three-dimensional shape, which
is why we define a texture on top of the quad, that contains the side vector, up vector
and depth correction factor at each point (Figure B.8C). While all other source code
changes are made in the GLSL file, this change is taking place in the C++ source file.
Although the profile texture is now correctly set, the visual result appears to be the
same and a look at the difference image confirms that they are identical. The change is
not visible, because the texture is not yet applied and no shading is implemented. We
implement Phong shading and now the lines appear as shaded three-dimensional tubes
(Figure B.8D). Unfortunately, it is not as easy to perceive the depth of the tubes in the
scene, especially if they do not intersect in the result image. We therefore improve the
rendering by integrating depth enhancement (Figure B.8E). Interacting with the visual
result and comparing it to the previous states demonstrates the advantages of the newly
implemented feature. The tooltip shows that this feature only consists of a few lines of
code and can therefore easily be added to other visualization algorithms as well. As a
last step, we draw arrows on the tubes to provide the viewer with the information on
the lines’ flow direction (Figure B.8F). The static scope tree of the final state is shown
in Figure B.4C. It provides an overview over the source code by clearly showing that
it consists of three source files (because the root node has three children), where the
C++ header file only consists of a single structural block, the GLSL file is a bit more
structured, and the C++ source file contains the most structuring elements.

Looking at the performance of our system in this example, the compilation of source

B

88 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

Figure B.8: Visualization with stylized line primitives. Only extracts of source code differ-
ences are shown. (A) Implement basic rendering of line primitives. (B) Add a black halo to
all lines. (C) Change the three dimensional data profile of lines. (D) Implement shading. (E)
Implement depth enhancement. (F) Draw arrows on lines, to describe the flow direction.

B

B.7 Evaluation 89

code took around 8 seconds, if it was successful. If it fails, the compilation process is
canceled much faster and provides a description of the error. Since the compilation
takes place on the server side, the user does not experience any slowdown in their
coding workflow. Changing the viewpoint on the visual result took around 100ms per
image. This means that when the user is only interested in the most current history
(last ten states), their result images can be computed within a second, since images are
updated starting from the latest state. Updating images for 100 states would take around
10 seconds, with the client view being progressively updated as new images become
available. The number of triggered compilations and created states vastly vary based
on the given task and the user’s typing behavior. While typing, 10–15 compilations can
be triggered every minute, of which 4–5 will be executed, while others are ignored in
favor of newer revisions. Most of the time, only one of these compilations is successful
and creates a state in the visualization. Users ended up with 30-50 states when working
on this example.

We have shown that our novel approach is able to reveal complex correlations be-
tween the visual result and the underlying source code of a visualization algorithm. It
provides the user with direct feedback, enabling them to discover implementation prob-
lems as soon as they appear. It opens up new ways of comparing visualization algo-
rithms by utilizing novel viewpoints onto the available meta data and thereby generates
greater knowledge about the algorithms themselves. Revealing these relations between
algorithmic techniques, mathematical formulas, implementation in source code, and vi-
sual outcome can greatly benefit the task of comparing visualizations on all these levels
and be especially beneficial for teaching visualization algorithms to students.

B.7 Evaluation

Given the subject matter of our work, we performed our evaluation in two rounds and
in the form of an expert review [200]. In the first round we gathered qualitative feed-
back on the functionality and usability of our presented framework using the Diderot
language. We selected 4 experts from academia with different specializations in the
field of visualization. All participants rated their expertise in visualization between
knowledgeable and professional. They had extensive experience in writing visualiza-
tion source code (on a monthly to daily basis), but none of them were intrinsically
familiar with Diderot. Based on the initial feedback, we improved our system to sup-
port C++ and GLSL code, handle multiple source files, and cache compiled source code
for faster state switching. We then conducted a second round of evaluation to gather
feedback on the improved state of the system by selecting 4 new experts with similar
experience and an example using C++ and GLSL. All participants were familiar with
different existing toolchains, ranging from C++ IDEs to web based development plat-
forms and we asked them to assess our system in the light of their experience. None of
the experts are co-authors of this paper, participated in the development of our system,
or had used it prior to the review.

Following the guidelines of Tory and Möller [200], the evaluation was split into
several sessions, interviewing one participant at a time and following the same proto-
col: At first each participant filled out a sheet of information describing their personal

B

90 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

very positive

positive

neutral
negative

Q11 Q12* Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

Figure B.9: Illustration of the participants’ answers to statements of our questionnaire on a
5-point Likert scale. Very positive feedback was reflected by either strong agreement to a
positively formulated question, or strong disagreement to a negatively formulated question
(marked by an asterisk). Very negative feedback was not given by any participant. The color
reflects the participants group, green for the first round and purple for the second round.

background and expertise in visualization algorithm development. They were further
introduced to the concepts of our approach and the application’s functionality. All in-
teraction possibilities were summarized on a two-page handout given to the experts.
We not only wanted to assess the functionality of our application, but also the meta
visualization’s ability to communicate information about the visualization algorithm’s
development process. We therefore provided the participants with the visualization ex-
amples from section B.6, depicted in Figure B.7 (round 1) and Figure B.8 (round 2).
Based on this initial state, the participants were asked to perform a set of simple tasks
and verbalize their thoughts and reasoning behind their actions (think-aloud protocol).
They were allowed to ask questions about the tasks and application at any given time.
The tasks were performed without time limit and designed to encourage the explo-
ration of all aspects of our system. Tasks like "Find a state with a bug" and "Figure
out, what the reason for the bug is" required the user to analyze the whole develop-
ment process on the visual and algorithmic level. Asking the participants to "Change
the code, so that it produces a different output" not only made them actively develop
within our framework, but created personal and for us unexpected results that led to di-
verse usage of the provided system. When the users completed the tasks, they received
a 28-statement questionnaire to answer on a 5-point Likert scale. It covered the dif-
ficulty and suitability of the given tasks, general functionality of the application and
assessment of individual components (e.g. "I found the abstract code view was giving
a good impression of the source code’s complexity."). It further included the ten state-
ments of the System Usability Scale (SUS), which allows for the uniform comparison
of different systems in terms of usability and user satisfaction. Last but not least the
participants were asked to openly summarize what they liked/disliked about the system,
what they would like to change about it, and how they rate its practical impact. The
participants’ feedback to each question, except for the SUS (Q1-Q10), is illustrated in
Figure B.9. All the answers can additionally be found in the supplementary material.

While we cannot discuss all the feedback in detail here, we want to highlight some
of the most interesting insights gathered through our evaluation. All participants rated
the system’s functionality as useful (Q11) and rated the availability of such a system
as beneficial for their work or studies (Q13). When assessing the availability of other
tools with similar functionality (Q12), participants named Git and Shadertoy (in round
2), but also mentioned the superiority of our approach given the extended functionalities
it provides. The participants mentioned several times that they would like to use our
system as a rapid prototyping tool, or as a platform for teaching visualization algorithms
to students, but that larger software projects would require additional features to support

B

B.7 Evaluation 91

the development of other parts than visualization or rendering modules.
Looking at the different components of our system, the result view was easy to un-

derstand (Q18), easy to use (Q19) and helpful in completing the given tasks (Q20).
The convenience of seeing all the visual outputs, investigating the source code differ-
ences by simply hovering over them and the intuitiveness of switching back and forth
between these states, were highly praised by several participants. The fact that chang-
ing the viewpoint in one state also updates the viewpoint in all other result images,
was recognized as being helpful for being able to compare the results to each other.
One participant raised the reasonable doubt that finding a certain state within the result
images after its parameters were changed might be difficult, since it is then harder to
recognize as being the same state. The revision tree gathered a more mixed feedback,
with most experts finding it easy to use (Q23) and, to a lesser degree, finding it easy
to understand (Q22). Several participants mentioned that the knowledge of how ver-
sion control systems work is beneficial in understanding the visualization and using it.
We believe that most of the problems with this view originate from the fact that several
branches can be collapsed in the same node and only results for the current branch are
shown at a time. Observing the participants’ interactions with the system showed that
this behavior was only a limitation at the first attempt, but once they had familiarized
themselves with the functionality, there was a noticeable improvement in how fluently
they used the system. Interestingly, feedback to the static scope tree representation was
more positive for experts in the second round, where the trees were larger and showed
the structure of multiple files. It seems that these experts had an easier time under-
standing the representation (Q24) and judge the source code’s complexity (Q25) within
several files. It was mentioned that code structure allows only for partial assessment
of the source code’s complexity, since for example a single line of code can perform
complex computations, and a single block can contain one or a hundred lines of code.
Additional code metrics would be necessary. While some participants did not look at
the SST at all, others wanted to use it but felt a lack of integration with other features,
as well as difficulties comparing multiple trees. Based on this, we believe that addi-
tional features like using the SST as a code navigation tool, highlighting structures on
code edits, and visualizing structural differences, can increase the utility of such a rep-
resentation. Alternatively, more direct visualizations of the source code structure, e.g.,
in the form of a pixel-based visualization, should be taken into account.

The generally good responsiveness of the system when switching between states
and investigating the different visual outputs and source code changes was positively
mentioned by several participants. The feedback further improved in the second round,
where caching of states led to even faster response times. The intermediate SUS score
went up from 78.75, which corresponds to an adjective rating between "Good" and "Ex-
cellent" [21], to 88.75 ("Excellent"). This confirms our impressions and is a promising
starting point for seeing our application in daily action. Quotes like "The programming
task becomes more explorative and free." and "It is actually a lot of fun to go through
the changes." emphasize our framework’s investigation capabilities with respect to the
algorithm’s evolution. They show how our tool might positively influence the develop-
ment workflow of visualization developers in the future.

The most sought after features were the comparison of states among different
branches and the availability of the difference image for two specific states instead
of showing it for collapsed groups only. Participants asked for a better link between

B

92 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

the source code and the tooltip displaying code difference. This includes clicking on
lines in the tooltip for navigation purposes, as well as highlighting code differences in
the editor itself. Other feature requests included more control over how the states are
grouped within the views, a merge tool, which combines the source code of two differ-
ent states into one, and a way of deleting revisions. Otherwise, additional performance
measures, more tools commonly seen in professional IDEs, and general customizability
were requested.

B.8 Discussion

Our proposed approach for designing a meta visualization system to provide insight
into the evolution of the prototyping process of a scientific visualization algorithm
combines several interesting research fields. By utilizing methods from software vi-
sualization, visualization of time-oriented data, visualization of visualizations, and the
analysis of the visual parameter space, it explores and raises new research questions.
Based on the feedback we received, we believe it is a promising concept to provide
visualization developers with novel information about their own research projects and
a tool to investigate their own algorithm development. It further allows for an easier
comparison of individual features to replace, improve, or combine them and enhance
the visualization algorithm.

Ease of Use
By automatically compiling source code and visualizing the result in a live view, we
follow in the footsteps of Vega-Lite [170] and ShaderToy [13]. We not only apply the
concept of an automatically updating result view to a programming language which re-
quires compilation in the first place, but further visualize all previous results to empha-
size on the result evolution. The fact that all intermediate steps are stored automatically
further integrates with the idea of focusing the user’s attention on the programming
task.

The comparison of visualizations is a complicated task which has not yet been
solved in a general manner. We facilitate the comparison of visualizations on a large
and small scale by providing a juxtaposition and explicit encoding of all visual results
and displaying their correlation to the underlying source code. We thereby increase the
awareness of how visualizations evolve and in which way different features apply vi-
sual changes to the result. Our novel approach of applying the same parameter set to
all visual results of the algorithm’s states, further improves the comparability and al-
lows for the visual exploration of the parameter space.

Scalability
While our system works well for developing prototypes for scientific visualization al-
gorithms, it benefits from certain conditions given in this specific scenario. The visual
result is commonly aligned to the original spatial dimensions in the data, which is often
achieved via a virtual camera model projecting the spatial data into two-dimensional
space. This alignment results in better comparability of different states based on im-
ages than in abstract visualizations, where vastly differing mappings from data to the
visual result exist. Although the evaluation of our system has shown the experts’ in-

B

B.8 Discussion 93

terest in utilizing our approach in other fields like information visualization or web
development, it is unclear how the comparison task scales to these scenarios in a gen-
eral manner. Additional study of this subject is required to extend our approach to other
subfields in visualization.

Utilizing Diderot as a domain-specific language allows for comparatively short al-
gorithms, that can be handled within a single source code file. When handling C++ and
GLSL code, the structure and source code changes of multiple files need to be visu-
alized, which results in both larger SSTs and longer tooltips. Scrolling along the time
axis and tooltip does not scale indefinitely and if SSTs become very large, it is harder
to make detailed comparisons between them. For example, SSTs in our use cases had
a maximum depth of 5 and 6, and a maximum number of nodes of 7 and 51 respec-
tively. In comparison, ParaView [17] as a full-fledged visualization application has a
SST depth of 17 and 40000 nodes in its core alone. An additional overview visual-
ization, or a different visualization approach in general, would be necessary to support
large multi-file applications with a lot of source code and many structural code changes.

We can reduce possible delays in the visual feedback by utilizing parallel execution
capabilities of programming languages and compiling and executing several different
states of the visualization algorithm at the same time on the server side. Looking at
large scale development projects, compilation time and runtime become increasingly
limiting factors for the visual support given. Since our system is built around short-
term visual feedback and runs several revisions of the source code with possibly sev-
eral parameter sets, the outlined benefits decrease for compilation- and runtime-heavy
visual applications. While the revision tree, SST, visual result and source code differ-
ence are still available, the live view and parameter changes on older revisions would
be delayed or might not be created at all within the time frame given between revisions.

Future Work
While creating a visual result from each compilable source code state includes all the
interesting cases that create visual changes, it might produce many unnecessary results,
take up a lot of screen space, and provide only little information. We try to counteract
this issue by bundling results to compress the time axis of our meta visualization. How-
ever, at present we do not provide any interaction technique to remove revisions from
the view, highlight interesting ones, or bundle states based on the user’s interests. Solu-
tions for the given tasks would be necessary when using our application for an extended
period of time and when many revisions are created. It would be interesting to explore
which other measures than the SST similarity could be utilized as factors for revision
bundling and how such measures comply with the users’ intent. Possible measurements
might be computations of visual differences, number of code changes, or performance
differences. Additional user interactions for tagging, removing or grouping states of
interest might provide a good alternative to automatic approaches.

In the same manner, the difference image provides automatically generated infor-
mation for improving the task of comparing several visualizations to each other. The
exploration of other measures than image variance that are able to quantify other as-
pects of image difference, or improve the comparison task in different manners, might
be a fruitful research area that we want to continue to investigate. We will further con-
centrate on the question of how such similarity measures can be correlated to source
code to localize code constructs and their impact on the visual result.

B

94 Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

While certain issues of an implementation might only become apparent for particu-
lar parameter sets, others can depend on the input data. Methods to compare and inves-
tigate the behavior of several algorithms on multiple input data sets need to be studied.
Additionally, user tasks vastly vary, so that different supportive information about the
source code and visualization need to be provided. Such options for task-specific cus-
tomization for visualization experts need to be analyzed and integrated into our system.
Since all the important information describing the visualization algorithm’s evolution is
stored on a server, many more interesting applications like building and sharing visual
notebooks, or collaborating with multiple users on the same visualization algorithm
come to mind. Our web client will be publicly available in such a way as to enable pro-
grammers to easily experiment with our interactive environment.

Lessons Learned
Our system gives a direction for future development of visualization algorithms. Work-
ing with the system and evaluating it with experts in the field revealed several points of
interest for future implementations of similar tools.

The accessibility of the system as a stand-alone website is particularly useful for
teaching purposes, since no setup of applications and no prior knowledge is required
to get the system running. The opposite is true for experts, who often have a running
toolchain in place, have projects stored in existing repositories, and are used to their
programming environment. They would greatly benefit from the visual support system
being independent of the code editor and storage solutions. One could think of our
system getting access to an existing repository and visualizing all available revisions,
either as a web-based tool, or as a plugin to existing IDEs.

The evaluation made clear that different users have varying opinions on feature
behavior. For the revision tree, some users preferred having the latest state at the top,
instead of the bottom of the visualization. Users did not agree on if the source code
difference should be shown from the hovered to the current or to the previous state.
It could further be displayed vice versa, from the previous to the hovered state, which
might depend on the task given. Some participants mentioned that the system was
trying to update too often, although they were not finished editing the source code yet.
These examples show that the system is required to provide extensive customization
options to adjust the interface and feature behavior to the user’s preferences.

The decision of using a modularized interface turned out very useful in terms of op-
tions for customization and extensibility. Following a similar approach on the server
side allows for easy extension to support multiple programming languages. Overall,
while our current prototype received positive user feedback and the proposed visualiza-
tion and interaction methods were appreciated, we fully acknowledge that our system
currently lacks several usability and customization features commonly found in profes-
sional IDEs. However, we plan to continue the development of our approach, with a
specific focus on addressing its applicability to larger scale software projects.

B.9 Conclusion

We presented a novel approach for designing a meta visualization that enables the
comparison of visual results of scientific visualization algorithms and their underlying

B

B.10 Acknowledgements 95

source code at the same time. This concept yields additional insight into their rela-
tionship and thus enables programmers in the field of visualization to find correlations
between visual changes and differences in the algorithms themselves. Our approach
supports programmers during the prototyping phase in keeping track of their develop-
ment, while relieving them from repetitive tasks and thereby increasing their productiv-
ity. The frequent task of switching between different development states and comparing
their visual outcome has been simplified to a one-click action by providing direct user
interactions in the meta visualization. The problem of finding a given state with spe-
cific features is further supported through state identification via result images. We also
showed how external functionality can be linked into the developed visualization algo-
rithm, by providing an interactive view of the visual result and the on-the-fly coupling
of specialized interaction functionality with program parameters. These parameters are
applied to all states of the development process to enable the instant assessment of their
impact.

B.10 Acknowledgements

The research presented in this paper was supported by the MetaVis project (#250133)
funded by the Research Council of Norway.

B

CC

Paper C

SplitStreams: A Visual Metaphor for Evolving
Hierarchies

Fabian Bolte1, Mahsan Nourani2, Eric D. Ragan2 and Stefan Bruckner1

1 University of Bergen, Norway
2 University of Florida, United States

Abstract

The visualization of hierarchically structured data over time is an ongoing challenge
and several approaches exist trying to solve it. Techniques such as animated or jux-
taposed tree visualizations are not capable of providing a good overview of the time
series and lack expressiveness in conveying changes over time. Nested streamgraphs
provide a better understanding of the data evolution, but lack the clear outline of hierar-
chical structures at a given timestep. Furthermore, these approaches are often limited to
static hierarchies or exclude complex hierarchical changes in the data, limiting their use
cases. We propose a novel visual metaphor capable of providing a static overview of all
hierarchical changes over time, as well as clearly outlining the hierarchical structure at
each individual time step. Our method allows for smooth transitions between tree maps
and nested streamgraphs, enabling the exploration of the trade-off between dynamic be-
havior and hierarchical structure. As our technique handles topological changes of all
types, it is suitable for a wide range of applications. We demonstrate the utility of our
method on several use cases, evaluate it with a user study, and provide its full source
code.

C.1 Introduction

Hierarchically structured data can be found in many places and has been addressed
by many visualization techniques. Ancestry, taxonomy, topology, company staff, file
systems, text articles, source code, and population data are just a few examples of
data with inherent hierarchical structures that can be represented by a tree with parent-
child relationships. Data that does not have inherent hierarchical structure, such as

This article was published in IEEE Transactions on Visualization and Computer Graphics (2020).

C

98 SplitStreams: A Visual Metaphor for Evolving Hierarchies

scalar data [87] and large text corpora [58], can be clustered to build a hierarchy for
providing a better overview and understanding of the data. The corresponding trees
have previously been visualized by explicit and implicit methods in two- and three-
dimensional space, as well as hybrids, in all kinds of visual layouts [175]. Visualizing
the evolution of such data, its hierarchical structure, and temporal changes requires
the integration of time as yet another dimension. Several approaches have utilized
existing tree visualization techniques to display each timestep in either a juxtaposed
layout or as an animation. Further efforts have been made to optimize these layouts
with respect to stability of object positions over time for preserving the users’ mental
map [78, 184, 188, 190, 203, 207]. More recent approaches began to adopt the Theme-
River [81] metaphor to convey the evolution of tree nodes in hierarchically structured
data by individual streams [56, 121, 137, 223]. All these methods are either limited
by only supporting a static hierarchy over the whole time series [56], only allowing
for data where each parent’s value is sufficiently larger than the sum of its children’s
values [137], or only allowing for a subset of trackable changes in the hierarchy [121].
While these techniques do a good job in presenting hierarchical changes over time, they
suffer from deficiencies in conveying the hierarchical structure at specific timesteps
when no hierarchical changes are in view and create ambiguities in the interpretation.

We present a novel visual metaphor for representing time-dependent, hierarchically
structured data in a static visualization. We take a nested streamgraph [137] as a ba-
sis, introduce splits to cut the streams at certain points in time, and add a horizontal
margin. By increasing the margin based on a stream’s hierarchy level, we reveal the
underlying hierarchical structure of the data. We enable fine-grained control between
visual continuity of individual streams and the visual clarity of hierarchical structures
at a given point in time. The presented approach allows for a clearer representation of
hierarchies even in cases when color cannot be used to encode the hierarchy level. In
contrast to previous approaches such as Chronicler [223], our method handles complex
hierarchical changes, like a node becoming the parent of its ancestor, in a consistent and
unambiguous manner. We propose a novel visual encoding for such cases and, in con-
clusion, cover all hierarchical changes that occur in the visualization of hierarchically
structured data over time. Our main contributions can be summarized as follows:

1. We introduce a novel visual metaphor to emphasize the data-inherent hierarchical
structure and its changes over time. Our approach is based on simple and clear
shapes that are capable of conveying the hierarchical structure independent of the
color scheme applied.

2. We conducted a user study to evaluate users’ performance in analyzing hierarchi-
cally structured data with the help of treemaps over time, nested streamgraphs,
and SplitStreams and demonstrate that our approach successfully addresses defi-
ciencies of previous methods.

3. We publish our implementation as an open source library for easy reproduction
of existing visualization techniques like one-dimensional treemaps over time and
nested streamgraphs, as well as the exploration of novel visualization techniques
introduced by this paper.

C

C.2 Related Work 99

C.2 Related Work

Our visual metaphor allows for the smooth transition between one-dimensional tree-
maps and stream-based, time-dependent visualizations. This approach combines the
advantages of both techniques and allows for novel visual layouts to emphasize hierar-
chical changes based on the application and user task. The visualization of static and
dynamic hierarchies has been widely studied and inspired our approach.

General Hierarchies: A multitude of techniques for the visualization of static hier-
archies have been proposed in previous work. Treevis.net [175] summarizes many of
these approaches and provides search and filter functionality. The authors further cat-
egorize methods into explicit and implicit visualization techniques, as well as hybrid
forms. Explicit methods are mostly based on a node-link diagram, where every data
item is represented by a node (e.g., a circle) and relations among these nodes are pre-
sented by a link (e.g., a line connecting two circles). Implicit methods, on the other
hand, are not required to draw links between nodes, but utilize positioning of individ-
ual nodes to represent hierarchical relationships. Treemaps [107] are one of the most
influential examples of implicit hierarchy visualizations, representing nodes as rect-
angles and nesting child nodes within the space of their parent element. The space is
vertically or horizontally split, creating rectangles proportionally sized to the numerical
values of the child nodes. Significant research efforts have been devoted towards opti-
mizing many aspects of both implicit and explicit techniques, including considerations
such as layout and aesthetics. One particular approach we build on are one-dimensional
treemaps [108], which nest nodes inside their parents, but always split the space along
the same dimension. As demonstrated by ArcTrees [149], this approach frees the sec-
ond screen dimension to represent additional information, such as the temporal evolu-
tion of the hierarchy.

Juxtaposed Hierarchies: For the visualization of hierarchies over time, one can in
principle use any existing visualization method to display a static hierarchy in each
timestep, either in a side-by-side (juxtaposed) manner or using animation. While Time-
Tree [46] displays a node-link diagram and provides a slider to navigate through time,
TreeJuxtaposer [148] integrates node-link diagrams in a juxtapositional manner. Isen-
berg and Carpendale [96] analyzed tree comparison tasks for juxtaposed tree layouts in
an interactive multi-user setup. Several works have stabilized the positioning of indi-
vidual data items in treemaps and optimized the layout strategy for easier comparison
and tracking of items [78, 184, 188, 190, 203, 207]. Vernier et al. [211] performed
a quantitative comparison of 13 different treemap layouts and collected a benchmark
dataset consisting of 2720 evolving hierarchies for that purpose. While juxtaposed trees
provide a good understanding of hierarchical structures at a given point in time, they
lack a clear representation of time-related changes. They require the user to keep a
mental map of all nodes and track their position and information encoding (e.g., color,
size). Therefore, such techniques fail in conveying the evolution over time for larger
trees and longer time series.

Static Hierarchies: Several approaches deal with data where values associated with
nodes or links change dynamically, but the hierarchy stays constant over the whole

C

100 SplitStreams: A Visual Metaphor for Evolving Hierarchies

time span. SemaTime [185] and Timeline Trees[40] display time-dependent informa-
tion for each leaf node of a static hierarchy. Burch and Weiskopf [42] visualize dynamic
values along the links of connected nodes. Based on the ThemeRiver metaphor [81],
and extensions like Byron and Wattenberg’s geometry and aesthetic optimizations [43],
similar approaches have been developed to visualize data values over time together with
their hierarchical structure. BookVoyager [218] displays the hierarchy explicitly, as an
indented tree, separated from the stream-based visualization. TouchWave [25] implic-
itly integrates the interaction with the hierarchy into a streamgraph. Both approaches
can be utilized to hide individual streams for better readability and scalability. Hier-
archicalTopics [64] compute a meaningful hierarchy for non-hierarchical data to uti-
lize the same interaction techniques. MultiStream [56] integrates multiple interaction
methods to improve the focus and context awareness, enable linking and brushing, and
tackle scalability issues with respect to time and hierarchical complexity. However,
these types of methods are limited to the visualization of a static hierarchy. Our goal
is to represent hierarchical changes over time in addition to the evolution of data values.

Dynamic Hierarchies: In the tree-ring metaphor by Therón [198], nodes of a tree are
placed on concentric circles based on their date of addition to the tree, where larger
rings correspond to later points in time. Since streams provide an intuitive visual
representation of changes over time, several methods adopt this approach to visual-
ize dynamically changing hierarchies. Outflow [224] draws streams between nodes
of individual timesteps and applies a hierarchical clustering to address scalability is-
sues. Burch et al. [41] draw an indented tree at each timestep and connect related nodes
via links. Based on narrative charts [146] where elements split and merge over time,
Textflow [57] visualizes hierarchical relationships as contours in the background of sto-
rylines. Tanahashi and Ma Cui [192] optimize such layouts to create visually pleasing
results and Liu et al [135] further emphasize the representation of hierarchical struc-
tures. Cui et al. [58] introduce specific visual encodings to improve the understanding
of hierarchical changes in stream-based visualizations, as well as tree cuts, which de-
fine the visibility of nodes at each time step.

Nested Tracking Graphs [137] introduced a stream layout similar to Theme-
River [81] for hierarchically structured data by nesting streams inside each other. This
representation allows for additions, deletions, merges, and splits in the hierarchy, but
can only be applied to data where every node has a significantly larger value than the
sum of values of its children. This requirement ensures that the hierarchical nesting
is visible. Temporal treemaps [121] extended this approach by a hierarchy-aware or-
dering for the reduction of edge crossings and visual cushions to support data where
parents inherit their values from their children. The presented method is limited in
the number of possible hierarchical changes, because only moves, splits, and merges
of streams along siblings are taken into account. Movements across hierarchy levels,
where a node changes its parent, are not visually represented. Chronicler [223] visu-
alizes the evolution of source code and allows for the movement of nodes across the
hierarchy. While all these stream-based techniques manage to visualize changes over
time, they suffer from limited clarity in conveying the hierarchical structure at a given
timestep. This issue becomes more apparent as the number of nodes or the number of
timesteps increases. As demonstrated in Figure C.1, the main problem is that the hierar-
chical nesting of streams only becomes visible at times of hierarchical change. As long

C

C.3 Overview 101

A B C

Figure C.1: Perception of hierarchies. (a) If the hierarchy is only encoded by the nesting of
streams, it is not clear if the visualization shows three streams (white contained by light blue,
contained by dark blue) or five individual streams. (b) When a hierarchical change is present,
the two-dimensional containment provides an intuitive understanding of the nested structures.
(c) In our approach, we split the streams and introduce margins to the visualization, to clearly
represent hierarchical structures at any given point in time.

as no hierarchical change occurs, the number of individual streams and their respective
nesting is only conveyed by color, but the interpretation of shapes can be ambiguous.
In order to get a complete picture of the hierarchy at a certain timestep, at least one
hierarchical change for every single stream needs to be visible, which negatively af-
fects the readability when a large number of timesteps or nesting levels are present. We
therefore propose a new visual metaphor which can not only reproduce these existing
visualization techniques but can further emphasize the hierarchical structure at every
single point in time without entirely relying on color coding to represent the depth of a
node.

C.3 Overview

C.3.1 Data

We work with hierarchically structured data in which both the values and the underlying
hierarchy may vary over time. For consistency with previous work, we refer to elements
within the hierarchy (tree) as nodes. Each node has a value, exists for a certain period
of time, and maintains a parent-child relationship (link) to other nodes. Every node
can have an arbitrary number of children, but at most one parent. Nodes which have
the same parent are called siblings. Nodes without children are referred to as leaves.
A node without a parent is called root and defines the highest hierarchy level. In case
several root nodes exist, we create an artificial root as the parent of all root nodes. The
depth of a node is the length of the shortest path between this node and the root. A
hierarchy level describes a set of all nodes with the same depth.

In order to visualize the mapping between nodes from one tree to the next, tree
changes need to be defined. Every node of a tree therefore requires an identifier. This
ID can be unique throughout all timesteps to clearly identify the existence of a node at
each point in time. Alternatively, the ID can be unique to the tree of the current timestep
only, in which case every node needs to store the ID of its predecessor and/or successor

C

102 SplitStreams: A Visual Metaphor for Evolving Hierarchies

in addition to its own ID. Nodes that are added to the tree in a particular timestep can be
identified by not having a predecessor. In the same manner, nodes which were deleted
do not have a successor.

There are different ways of assigning scalar values to nodes. In some data, the value
of a node is described as the sum of the values of its children, so that only leaf nodes
contain a value. In the following, we will refer to the sum of values of a node’s children
as aggregate and refer to a node which uses this aggregate as its value as aggregated
node. An example would be population data, where each person has a value of 1
and the population within a state is calculated by the sum of all people living in the
state. The population of a country is then inherently defined as the sum of all state
populations and so on, until the world population builds the root node, containing the
number of living people as an aggregate. In other cases, the value of a node can exceed
its aggregate and requires the definition of its own value. Instead of population, we
could consider the area of buildings in a city as values. The area of a city district,
which would represent the parent node, does not only contain buildings, but additional
empty space and requires its own area value. In the same manner, states cover space
which is not part of any city, and the world covers area which is not part of individual
continents.

C.3.2 Visual Encoding

Nodes and their relationships may undergo many changes over time which need to
be visually represented. Nodes can change their value, be added, split, merged, and
deleted. They can further build new hierarchical relationships by changing their order
among siblings or changing their parent. In the following, we will describe all possible
modifications in detail and introduce their visual representation in our method. All
higher-level operations on trees, like node swaps or rotations, can be represented by
combinations of these cases.

C.3.2.1 Content Change

When the value of a node changes from one timestep to the next, it is
represented by a proportional change in height. The change is visu-
alized by an interpolation of the node’s current representation and its
position and value at the previous timestep. If values are only defined
in leaf nodes of the tree, then the change in value propagates up and
updates the values of ancestors in an iterative manner.

If the parent of a node has a higher value than its aggregate, then
there is visual space available to move children without changing the
sibling order. A node’s position defines the distance of this node to the
parent’s starting point on the Y axis. The positional range by which a
node can change while neither affecting hierarchical structure nor sib-
ling order is limited by the position and size of the surrounding siblings.

Further changes to the content of a node can occur, e.g. in a document, where the
text of a paragraph might change without changing its length. In this case the value
and position of the node would stay unaffected and our visual representation would not
change. While such changes can, for instance, be covered by changes in color encoding

C

C.3 Overview 103

or tooltip information, they are specific to the underlying data and user task and will
therefore not be discussed in this paper.

C.3.2.2 Add & Remove

When a node is added to the data, we cannot interpolate between the
current timestep and the node’s previous representation as it did not
exist in the previous timestep. These cases could be visualized by in-
terpolating between a zero value at the previous timestep and the value
of the node at the current timestep. Since the node did not exist in the
previous hierarchy, it is not clear where the zero value should be lo-
cated. This is especially problematic when the hierarchical structure was very different
in the previous timestep. We therefore introduce a half ellipse in front of the stream
to communicate the addition of nodes to the hierarchical structure, similar to the caps
introduced by Chronicler [223]. Analogously, the deletion of a node is represented by
adding a half ellipse to the end of the stream.

C.3.2.3 Split & Merge

If a node has multiple predecessors, it means that multiple nodes
merged into a single node from one timestep to another. If a node splits,
it has multiple successors. The split in the data is visually represented
by a split of the stream. The stream begins with the representation of
the previous node and then splits into the representations of all involved
nodes at the current timestep. In the same manner, merges of nodes are
represented by a merge of individual streams into a single one. Depending on the loca-
tions of merges and splits, stream crossings might be inevitable [121].

C.3.2.4 Move

We will now discuss move operations that always introduce stream crossings to the vi-
sualization. We differentiate between three cases: Movement within a node, across
nodes, and along ancestors, which can be seen as a special case of the former.

Movement Within a Node: Movement within a node is defined by a
reordering of a node’s children. This type of movement can only occur
when there is a predefined order to the tree nodes. As an example, a tree
in one timestep might consist of a root node with two children A and
B. In the next timestep, the positioning of the children has switched,
so that they are stored in the order (B,A) within the root node. When
interpolating between nodes at their respective positions, the child streams will cross
each other. The number of edge crossings within the dataset largely depends on the or-
dering. If the order of children does not matter for the represented data, the number of
edge crossings can be reduced by applying a suitable sorting algorithm.

C

104 SplitStreams: A Visual Metaphor for Evolving Hierarchies

Movement Across Nodes: We define a node changing its parent from
one timestep to the next as a hierarchical change across nodes. Since
our visualization is built around nested streams, the stream represent-
ing such a structural change will at least have to cross the border of its
parent element. Depending on the depth difference between the nodes
and based on the current order of the tree, the stream might cross sev-
eral other streams.

Movement Along Ancestors: A special case of nodes moving across
hierarchy levels is nodes becoming the parent of one of their previous
ancestors. Let us assume a tree that only consists of a root node with a
single child. If these two nodes switch their position from one timestep
to the other, then the child becomes the parent of its previous parent.
Such a scenario could for example occur when switching the inner and
outer loop of an algorithm during development. The two structural nodes would change
their position and swap the hierarchical level they live in. The problem that occurs lies
in the drawing of streams, where streams of higher depth are always drawn on top of
the streams they are nested in. Since, in this case, the nesting changes, we would need
to draw the child on top of its parent in one timestep, but switch this order for the next
timestep. In order to solve this conflict, we are required to cut one of the two streams
in half and draw the first half on top and the second half underneath the other stream or
vice versa.

To come up with a visually more pleasing solution, we imagine the
streams as two sheets lying on top of each other, cut a hole into one
of the streams, and thread the other through the hole. The technique
scales to an arbitrary number of such movements by adding more holes
and threads to the streams. This representation is not only required
when a child node switches positions with its parent, but whenever a
node becomes an ancestor of any of its previous ancestors. The detection of such cases
requires a complete tree traversal.

C.4 SplitStream Generation

In the following section we describe our metaphor for visualizing evolving hierarchies.
We will demonstrate how the general definition of our method allows for the smooth
transition between one-dimensional treemaps and nested stream visualizations, as well
as the generation of our own visual approach. We further provide a detailed explanation
of parameters to adjust the visualization based on the data and task at hand.

C.4.1 Hierarchy-Change Ratio

When visualizing hierarchies over time, one can display a static tree representation for
each timestep in a juxtaposed manner. One example would be to compute a treemap for
each timestep and show all these treemaps next to each other sorted by time. In the fol-
lowing, we will only focus on one-dimensional treemaps, which draw each node as a

C

C.4 SplitStream Generation 105

A One-dimensional treemap over time. The white rectangle changes its parent element from step 1 to
step 2. Between step 2 and step 3, the white node is deleted and a new white node is created. These
hierarchical changes are not visually distinguishable.

B Nested streamgraph. Hierarchical changes are clearly visualized, but the structural nesting is merely
encoded in color. Aggregated nodes, such as the dark blue root node, are not visible.

C One-dimensional treemap over time with a fixed width for each node.

D Connecting the nodes of individual treemaps by streams, to represent hierarchical changes.

E SplitStreams. Each treemap is split in the center and all streams are inset based on their hierarchy
level. The hierarchical changes over time, the nested structures at each point in time, and aggregated
nodes are now clearly visible.

Figure C.2: Treemaps (a) visualize hierarchies at specific timesteps and nested stream-
graphs (b) display structural changes over time. SecStreams (e) combine these approaches
to accomplish both tasks in one static visualization. All depicted visualizations share the same
dataset and a common time axis.

C

106 SplitStreams: A Visual Metaphor for Evolving Hierarchies

rectangle, stack all children of a node on top of each other and nest them inside their par-
ent element (Figure C.2A). The height of each rectangle corresponds to the value of the
node. The hierarchy is represented by assigning a smaller width to deeper nodes. This
representation provides a clear depiction of the hierarchy even for aggregated nodes.
The main issue when showing static hierarchies per timestep is that changes from one
step to another are not readily apparent. The user needs to track the elements’ position
and color, which becomes more difficult as the number of elements and changes in-
creases. Furthermore, some hierarchical changes cannot be distinguished at all. When
a node N changes its parent, its rectangle will be nested inside its parent A in one
timestep and then move to be nested inside its new parent B. The very same visualiza-
tion would be created if N is deleted in A and a new child M is added to B. We can
therefore not distinguish between a move operation and the combination of a delete and
an add operation (Figure C.2A).

Nested streamgraphs are trying to tackle this problem by visualizing hierarchical
changes directly. One can think of this as drawing one-dimensional treemaps at each
point in time, setting their width to 0, so that every treemap only consists of a single
vertical line, and connecting the representations of each node at every timestep by a
curve (Figure C.2B). Because the changes themselves are displayed, we can now eas-
ily distinguish the movement of a node from a delete and add operation. Furthermore,
the comparison of values is now guided by connected lines and not dependent on the
comparison of heights alone. The main problem we face when using streams instead
of treemaps is that the hierarchical nesting is not explicitly visualized. The margins
that used to display the nesting in treemaps were removed in favor of drawing contin-
uous streams. While color can be utilized to represent hierarchy levels, the number
of distinguishable shades of a color limits the levels of hierarchy we can display. Ad-
ditionally, when a node changes its hierarchy level, it is unclear what color this node
should be assigned. On top of that, aggregated nodes are not visible anymore, as shown
in Figure C.2B.

We introduce SplitStreams, a hybrid approach which is meant to combine the ben-
efits of both treemaps and nested streams, while reducing the drawbacks of both ap-
proaches. The goal is to visualize hierarchical changes over time directly, while still
conveying the nesting of nodes at all timesteps. In order to accomplish this task, we
draw a treemap at every point in time and set the width of all nodes to a fixed value (Fig-
ure C.2C). We then connect nodes between treemaps via streams, which leaves us with
a visualization similar to the nested streams, but with horizontal lines in the treemap
areas (Figure C.2D). Finally, we split the graph at every timepoint, in the center of
each treemap, and move every stream by a certain margin away from the split position.
The margin that is applied to each node is based on its hierarchical level, which rein-
troduces the representation of nested structures (Figure C.2E). What we end up with is
a visualization of changes, where each block displays the hierarchical structure at two
points in time, one in the beginning and one in the end. The part in the middle displays
the change between both hierarchies.

In order to draw both, the treemaps at each timestep and the streams between them,
we must divide the available space between two points in time and reserve a certain
portion of it for each visualization method. If we reserve more space for the treemap,
hierarchical changes will be more cramped and less visible. If we dedicate more space
to be used by the stream representation, there will be less space for introducing margins

C

C.4 SplitStream Generation 107

and displaying nested structures at a given point in time. We call this trade-off the
hierarchy-change ratio (HCR). An HCR of 1 means that we are only showing hierarchy,
a treemap at each point in time. An HCR of 0 will only represent change, leading to
a nested streamgraph. This parameter allows for the smooth transition between one-
dimensional treemaps and nested streamgraphs.

C.4.2 Splits and X-Margins

Treemaps utilize two spatial dimensions to visualize hierarchical nesting, so that rect-
angles of nodes are completely contained by the rectangle of their parent node. Nested
streamgraphs replace one of these spatial dimensions to represent time, which helps to
visualize changes, but reduces the user’s capability to read hierarchical structure at a
given timestep. Nodes of higher hierarchy levels are occluded by the continuous rep-
resentation of their children. In order to visualize hierarchical structures, we introduce
splits to cut the stream representation. We then define an x-margin, which opens up
each split, by clipping the width of individual streams. When the width of a stream is
reduced, its underlying streams become visible. By choosing a margin for each stream
based on its hierarchy level (depth in a tree), we can display the complete hierarchical
structure present at that point in time. One should keep in mind, that if the margin be-
comes too large and the space provided for each point in time is too small, nodes with
high depth values will not be visible anymore. We therefore propose to provide screen
space for each timestep based on the following formula:

HCR ·dist(ti, ti+1)> mx
(
dmax(ti)

)
+mx

(
dmax(ti+1)

)
(C.1)

where dist is the distance between two points in time on the x-axis, dmax is the maxi-
mum depth of the hierarchy at time t and mx is the margin defined for the depth given.
We hereby assure that the distance between two timepoints is large enough to represent
every single node given the desired margin. By adding the HCR to the equation, we
further ensure that the margin will only be applied in the treemap areas, where streams
are drawn as horizontal lines, so that streams will not change their starting and end po-
sition when being clipped. In order to keep the time axis linear, the distance between
all timesteps should be fixed and larger than the maximum distance required to display
the margins without reducing any node’s width to zero.

For most of our examples, we utilize a fixed x-margin, which linearly decreases
the width of nodes along the depth of the hierarchy by a fixed amount (Equation C.2).
Depending on the task the visualization is supposed to solve, a non-linear scaling of
margins might be better suited. The margins can for instance be steered to focus on
a certain level of hierarchy by applying a bigger margin to nodes of a specific depth.
By reducing a stream’s width the deeper it is in the hierarchy (Equation C.3), we can
emphasize hierarchical structures for deeper nodes (Figure C.3 left). When choosing
a higher width reduction for nodes closer to the root (Equation C.4), leaf nodes are
barely separated from their parents, keeping the appearance of streams as continuous
as possible (Figure C.3 right). In order to avoid introducing overlaps between streams,
we define margins in a recursive manner, so that every node’s width is at least as much
reduced as the width of its parent element. The margins can be represented as functions:

m f ixed = mx
(

p(n)
)
+ value (C.2)

C

108 SplitStreams: A Visual Metaphor for Evolving Hierarchies

Figure C.3: Left: Hierarchical Margin. Streams receive a higher margin, the deeper their
hierarchy level is. Right: Reversed Hierarchical Margin. Streams closer to the root receive
larger margins. Although both cases feature the same margin on the root node, the latter case
provides a clearer representation of changes over time, because leaf nodes are not pushed so
far away from each other.

mhier = mx
(

p(n)
)
+d(n) · value (C.3)

mhier−1 = mx
(

p(n)
)
+

value
d(n)

(C.4)

where mx is the margin, n is a node in the tree at timepoint t, p is its parent, d is the
node’s depth, and value is a fixed number which steers the size of the margin. For the
root, which does not have a parent node, we set the margin to 0. It should be noted that
a single stream can have different margins at different points in time, for instance if it
moves into a new parent and thus changes its hierarchy level.

While both treemaps and SplitStreams utilize splits and margins to visualize nested
structures, there are two notable differences in their generation. First, to keep the ap-
pearance of a continuous stream in SplitStreams, we do not introduce a margin for the
root node. Second, as can be seen in Figure C.2, splits for treemaps and SplitStreams
are located at different positions on the time axis. For treemaps, we split streams be-
tween timesteps to separate them from each other. In our method, we split streams at
timesteps to separate the changes. Although splits could be located at any possible po-
sition on the time axis, we did not encounter any meaningful examples for other split
positions.

C.4.3 Y-Padding and Y-Margin

In the same manner as an x-margin can be applied to streams to better communicate the
hierarchical nesting of nodes, a y-spacing can help to ensure that a node’s representation
is completely covered by its parent, hence improving the perception of the hierarchy.
In particular for aggregated nodes, hierarchies are only visualized in the x-dimension
where split. Y-spacing must be applied with care, as it distorts the represented values.
In the following we will discuss two different approaches in detail and demonstrate
their advantages and drawbacks.

C

C.4 SplitStream Generation 109

a) ym = 0 b) ym = 10

c) ym = 20 d) ym = 30

Figure C.4: Y-Margin. For aggregated nodes (a), a y-margin can improve the perception of
hierarchies (b). Increasing the y-margin (c,d) creates a form of semantic zoom, since smaller
nodes disappear, as the y-margin gets larger.

Adding a y-padding to the visualization means increasing the value of every node
which is not a leaf node. Let us consider a simple example, where the tree at a given
point in time consists of a root node with one child. The child node has a value of 1,
so the root node’s aggregate is 1. If we draw the streams for that tree, the root will be
completely occluded by its child. We could therefore increase the root’s value to make it
visible. While hierarchies would be better perceived that way, it also introduces an error
because the root node is now represented larger than before. The deeper our hierarchy
is, the more padding needs to be introduced. In many cases we want to see additional
spacing between siblings, so the padding scales with both depth and the number of
children. The most critical part is, that if a node changes its hierarchy level from one
timestep to another but keeps the same value, that this value will be represented with
different heights, because the applied y-padding depends on the depth of the node. This
can have a major impact on the interpretation of values in the visualization. The benefit
in perceiving hierarchical structures is in this case counterbalanced by reduced accuracy
in value perception. However, for tasks in which the node values are not present or are
not of primary importance, but the hierarchical nesting and structural changes matter,
y-padding can be utilized as showcased in Figure C.6, to increase the perception of
hierarchies. We gave every leaf node a value of 1 and added a y-padding of 1 plus the
number of children to every aggregate.

Instead of increasing a node’s parent with y-padding, we can reduce a node’s height
directly by a fixed value. We call that value y-margin. The error being introduced is
very similar to that of y-padding, with the difference that the node’s height will reach
0 as soon as the y-margin is larger than the node’s value. This approach can be utilized

C

110 SplitStreams: A Visual Metaphor for Evolving Hierarchies

as a form of semantic zoom, by increasing the y-margin step by step. As a result, nodes
with small values will disappear and nodes of higher hierarchy levels become visible.
This approach allows for data inspections independent of the hierarchical level, but only
dependent on the node’s values. We demonstrate the semantic zoom with different
levels of y-margin in Figure C.4. In the same way the x-margin can be defined by
different functions (Equation C.2-4), the y-margin can be defined to allow for task-
dependent steering of the zoom functionality.

C.4.4 Algorithm

In order to generate a SplitStream, we need to traverse the given hierarchy at every
point in time and calculate a position for every node of the tree. The nodes are then
individually traversed through time and drawn based on their characteristics. We need
to handle cases of nodes being created, being deleted, splitting, and merging, in addition
to the connection of nodes by streams. When all streams are drawn, we can introduce
splits to cut them open based on the defined margin function. In the following, we will
describe our method in more detail.

If values are only defined in the leaf nodes of the data, or the hierarchy has no values
defined at all, we need to compute missing values. We therefore recursively traverse
every tree in a depth-first approach, until reaching a leaf node. If the leaf has no value
defined, we set it to 1. We can then define every node’s size by computing its aggregate.
To make the hierarchies more visible in the final visualization, we can add a y-padding
here.

In case the data does not specify positions of nodes, we can define them in such a
way that all children are equally spread within their parent element. We initialize the
position of the root element with 0 and iterate through all nodes of the tree except for
leaves to define their spacing attribute as follows:

spacingn← (n.size - n.aggregate)/(#children+1). (C.5)

It describes the space between all children of the given node n in the resulting stream
visualization. We can then compute the position of every child by:

aggregate← 0
for all i:=1 to #children do

child[i].pos← i× spacing+aggregate
aggregate← aggregate+ child[i].size

When the position and size of every node are set, we can connect them to streams.
We can identify all streams by looking for nodes which do not have a predecessor.
Starting with these nodes, we follow all their succeeding nodes, draw a stream between
the two nodes and repeat this operation in a recursive manner for all following nodes.
The algorithm to draw all streams can be found in section C.9A. In order to handle
the special case in which a node moves into one of its ancestors, we need to check for
every node which changes its parent, if that parent was an ancestor of this node in the
previous timestep. If this is the case, we split the stream into two streams and mark
them to draw their case-specific encoding at the beginning or the end.

C

C.4 SplitStream Generation 111

Splits can be integrated into the drawing algorithm directly, or be applied as a post-
processing step. The fact that splits can occur at any point in time and can have an
arbitrary size, makes the analytical integration somewhat cumbersome. Instead, we
apply splits after the drawing process by going through every stream and cutting it at
positions where splits occur. For every split we can find the two nodes of the stream
which are closest to the split (left and right) and remove a part of the stream equivalent
to the respective margins of these nodes. For SplitStreams, we apply splits at every
timestep, so that the nodes to the left and to the right of the split both refer to the
same node from the timestep the split is applied to. This ensures that the hierarchy is
represented in the same way for changes occurring before and after the timestep.

C.4.5 Implementation

We implemented SplitStreams as a JavaScript library based on D3 [34]. To showcase
our results, we utilized standard web technologies (HTML5, CSS3) and Vue.js [15].
Streams are created as SVG paths following the outline of all nodes a stream contains.
Hierarchical changes are displayed by Cubic Bezier curves with control points set to
the center between both points in time, but horizontally to the nodes’ y-position. This
assures G1 continuity at the common points. We utilize SVG clippaths to apply x-
margins by removing parts of the paths after they have been drawn.

In order to evaluate the performance of our current implementation, we ran the
algorithm for generating SplitStreams (section C.9A) for a subset (1313 evolving hi-
erarchies) of Vernier et al. [211]’s benchmark datasets ranging from small datasets up
to approximately 100K nodes. The results are plotted in Figure C.5 (right) and the ta-
ble on the left shows exact timings for selected representative datasets. The timings do
not include rendering of the created SVG image as performance varies widely across
browsers and devices. In the worst cases that we observed, for very complex topolo-
gies, the SVG rendering time was approximately the same as the generation itself. The
complete implementation of our method, including many of the presented examples,
can be found at https://github.com/cadanox/SplitStreams.

nodes time [ms]
14 2

347 13
2471 50

12214 247
47371 956
99548 2404

Figure C.5: Algorithm performance for 1313 datasets. The benchmark was executed in Google
Chrome v77 on a Windows 10 machine with an Intel Core i7-6700 CPU.

C

112 SplitStreams: A Visual Metaphor for Evolving Hierarchies

C.5 Use Cases

In order to showcase some of the results that can be achieved by applying our visual
metaphor to real data, we selected a taxonomy of medical terms, as well as a public
Github repository to demonstrate their evolution over time.

C.5.1 MeSH Taxonomy

Taxonomies are used in science to classify entities, like the phylogenetic tree which
shows evolutionary relationships between species. The U.S. National Library of
Medicine maintains a taxonomy of Medical Subject Headings (MeSH), currently in-
cluding nearly 60000 medical terms in a hierarchically-organized vocabulary [10]. The
taxonomy requires changes based on scientific progress and new insights gained, and
versions are made available for the last ∼20 years. The visualization of changes over
the years can help in finding inconsistencies and provide pointers to changes that should
be made for the next revision. We selected two branches that show several interesting
features of the hierarchy and visualized their evolution. Changes are specified between
every two successive years. When there were no changes in the data for several con-
secutive years, we contracted them into one block.

In Figure C.6, we show the changes in medical terms for the Urinary Tract between
2005 and 2012 with the main branches Urethra (a), Ureter (b), Kidney (c), and Bladder
(d). These classes are more clearly separated by SplitStreams than by a nested stream-
graph. The two highlighted branches (orange) represent the Kidney Glomerus, once
nested inside Nephrons and once inside the Kidney Cortex. In 2006, several nodes
were added and the same structural changes were applied to both branches through-
out the years. In 2012, the new class Glomerular Filtration Barrier (e) is introduced to
the Kidney Glomerus in both Kidney Cortex and Nephrons. However, the two classes
Glomerular Basement Membrane (f) and Podocytes (g) are only defined as children of
the barrier in Kidney Cortex. This difference is likely to be a mistake in the data and
should be fixed in the next revision of the taxonomy. The addition of splits helps to
highlight the occurrence of hierarchical changes and to identify the depth of involved
nodes.

The evolution of medical terms for the Digestive Physiology between 2006 and
2017 can be seen in Figure C.7. In 2007, the two classes Processes and Phenomena
are introduced on the root level (a). The hierarchy stayed consistent for a year, until
Phenomena were removed again (b) and their children moved into the root node (c).
In 2017, the Processes class is removed as well and all its children move to the root
node while receiving new IDs (d). We can see that a few nodes were removed and
added, instead of appearing as a continuous stream. This finding can indicate missing
ID changes in the data, or an error in the data processing pipeline.

While most changes can be detected in the nested streamgraph representation, it
becomes increasingly harder to understand the hierarchical structure and the depth of
changing nodes. SplitStreams help us to map the continuous streams to their discrete
timescale, highlight positions of hierarchical changes, identify the depth of individual
nodes, and provide us with a structured representation of the underlying hierarchy. We
can get a more general intuition of the depth layers in which changes occur and thereby
judge their impact on the data.

C

C.5 Use Cases 113

Figure C.6: MeSH Urinary Tract 2005-2012. Hierarchical changes of nodes being added,
switching their sibling order, and moving into a new parent, are visible in both representations.
SplitStreams enable the user to, e.g., count the number of timesteps shown (5) and count the
number of main classes in the Urinary Tract (4). The additional space used for displaying
lower level nodes eases the interaction task.

Figure C.7: MeSH Digestive Physiology 2006-2017. a) Addition of Processes and Phenomena
to the root node. b) Removal of the Phenomena class. c) Individual Phenomena move into the
root node. d) Some changes of class IDs are not listed in the data.

C

114 SplitStreams: A Visual Metaphor for Evolving Hierarchies

Figure C.8: Dear ImGui Github Repository (7 monthly revisions). While nested streamgraphs
(top) utilize color to convey the hierarchical structure of the data, SplitStreams represent it in
the form of clear shapes. The hierarchy is even visible, when only drawing the outline of each
node.

C.5.2 Leaflet Github

Vernier et al. [211] collected 2720 datasets showing the evolution of values over time,
roughly half of which feature a hierarchy. While the authors utilized the data to bench-
mark different treemap layouts with regards to their stability, we can visualize the very
same data in our static, time-dependent hierarchy representation. Dear ImGui [4] is
a graphical user interface library for C++. In Figure C.8 we show the evolution of 7
monthly revisions of the ImGui Github repository, once as nested streamgraph and once
as SplitStream. The folder structure builds the hierarchy at each point in time and each
file’s value is determined by the number of lines of code the file contains. While the
changes of values and hierarchical changes (addition, deletion of files) are visible in the
nested streamgraph, it can be difficult to understand the hierarchical structure given in
each point in time. While nested streamgraphs utilize color to represent a node’s depth,
SplitStreams make use of clear shapes and show depth via containment. A better under-
standing of the hierarchy eases the task of correlating changes in the hierarchy to files
in the repository. Being able to count the number of elements in each node (e.g., 5 in
the first revision) gives us a better impression of the distribution of files and the size of
higher-level folders. Being able to see a clear separation at every timestep further pro-
vides us with a better intuition for the time scale being used. All benchmark datasets
from Vernier et al. [211] can be investigated through the exemplary implementation of
our method in the supplemental material.

C.6 Evaluation

We conducted a controlled user study to investigate and compare our visualization tech-
nique with existing methods. In this section, we briefly explain the experimental design
and results.

C.6.1 Motivation

Since SplitStreams are an extension of the nested streamgraph (NSG) approach [137,
223], we want to see if the introduced design changes improve the users’ performance

C

C.6 Evaluation 115

in understanding the hierarchical structure at specific points in time. Treemaps are a
well established technique for visualizing hierarchies, so that we can use them as a base-
line for how well hierarchies can be perceived in a visualization. Temporal Treemaps
[121] utilize cushions to emphasize hierarchical structure in NSG and can therefore be
seen as the logical competitor to our approach. Since cushions can be applied to all
our tested visualizations, and the introduction of yet another visual encoding would in-
crease the number of independent variables and thereby decrease the statistical power
of the analysis and results, we do not consider them for this comparison.

C.6.2 Hypotheses and Goals

Based on the main tasks this visualization is meant to solve, we considered the perfor-
mance in understanding hierarchical structure at a given point in time, understanding
changes in hierarchy, and comparing node values over time.

Given that our method uses the same shape-based design as Treemaps to visualize
node containment, we hypothesized that users would have a better performance using
SplitStreams compared to NSG in understanding hierarchies at a given point in time.
Since hierarchical changes over time are equally represented in NSG and SplitStreams,
we expected users’ performance to be significantly better than in the Treemaps visual-
ization, where changes are not explicitly displayed. Finally, we tested the hypothesis
that both SplitStreams and NSG would be superior to the Treemaps design for the task
of comparing node values, because the streams help to identify the areas of interest.

C.6.3 Experiment Design and Task

To test our hypotheses, we designed an experiment in which the participants would
view images of visualization techniques and answer one question per image. We de-
fined one independent variable for this experiment, visualization type, with three levels:
SplitStreams, NSG, and Treemaps. In order to not overwhelm the participants and avoid
learning effects, the study followed a between-subject design, where each participant
would complete exactly one condition. Each participant completed 14 basic analysis
tasks each using a unique visualization image. To avoid potential confounds, all con-
ditions had the same tasks, featuring the same datasets, but showing different images
based on the condition created by the system described in subsection C.4.5.

The questions were based on a file system scenario with folders and sub-folders
and designed to cover three different analysis tasks. The first task type focused on
understanding the hierarchy at a certain point in time (e.g., count the number of siblings
or ancestors a certain node has at a certain timestep). The second task type focused on
understanding changes in hierarchies over time (e.g., count the number of times a node
moved). The last group focused on node-value comparisons over time (e.g., how many
nodes shrank during a given period of time). We had 13 questions with a distribution
of 5-5-3 for the different task types, and one simple attention check question that was
excluded from the analysis. The order of trials was randomized to avoid potential
confounds. To reduce task complexity, trials included no more than 20 streams and
5 timesteps in one image. Additionally, the number of hierarchical changes was kept
low to avoid frustration particularly in the Treemaps condition. All questions for all
conditions can be found in the supplemental material.

C

116 SplitStreams: A Visual Metaphor for Evolving Hierarchies

Participants provided answers via numeric text entry and could make multiple at-
tempts. Each trial participants were required to enter the correct answer or reach a 5-
minute time limit before continuing to the next question. Correctly guessing the correct
answer without inspecting the visualization was highly unlikely due to the unbounded
nature of the textbox input.

Metrics used to assess user performance included: error of first response, time for
first response, number of attempts, and total time per task, recorded for each trial. Error
was calculated as the absolute difference between the answer given in the first attempt
and the correct answer. To record and report these measures in accordance to our study
goals, we calculated the average of each metric based on the question type.

C.6.4 Participants and Procedure

The evaluation was conducted as an online user study using Amazon Mechanical Turk
(AMT). A total of 120 participants completed the study, of which 102 passed the at-
tention check and were included for the analysis. We ended up having 34, 35, and
33 participants per Treemaps, NSG, and SplitStreams conditions. Participants first re-
viewed a set of instructions based on their assigned condition, followed by 3 example
trials and 3 practice trials. After each example and practice trial, they were shown feed-
back with the correct answer and a visual explanation for how the answer was achieved.
Next, participants completed the main set of questions to provide the results for anal-
ysis. In order to avoid any learning effects, participants were not given feedback with
the correct answers after answering during the main tasks.

C.6.5 Results

We compared the results from SplitStreams, NSG, and Treemaps conditions to under-
stand their differences based on task types. Due to the data not being normally dis-
tributed, we used the Kruskal-Wallis non-parametric test to evaluate the main effect
differences among the study conditions and a Wilcoxon post-hoc test for pairwise com-
parison. The study results are shown in Table C.1. Due to space restrictions, we do
not report the test results from node-value comparison tasks in this table as we only
observed one significant effect among all four measures.

Figure C.9A and Figure C.9B show the average number of attempts and total time
per task for the task type understanding hierarchies. The results show that the partici-
pants from both SplitStreams and Treemaps conditions had a significantly lower number
of attempts compared to the NSG condition. Also, participants were significantly faster
in answering this type of question with SplitStreams than with the NSG visualization.
These two observations align with our first hypothesis that our approach improves user
performance compared to NSG by using the same shape-based design as Treemaps.

For the task focusing on understanding the changes of hierarchies over time, our re-
sults demonstrate that error of first response and number of attempts were significantly
higher in the NSG condition than in SplitStreams and Treemaps (Figure C.9C). How-
ever, users of Treemaps were significantly slower in answering such questions than in
the other two conditions (Figure C.9D). Combining these findings, we can conclude
that users from both SplitStreams and Treemaps conditions were not significantly dif-

C

C.6 Evaluation 117

M
ea

su
re

U
nd

er
st

an
di

ng
hi

er
ar

ch
ie

s
U

nd
er

st
an

di
ng

ch
an

ge
so

fh
ie

ra
rc

hi
es

ov
er

tim
e

Av
er

ag
e

#
of

A
tt

em
pt

s
M

ai
n

E
ff

ec
t

χ
2 (

2)
=

24
.3

9,
(p

<
0.

00
1)

*
χ

2 (
2)

=
14
.6

5,
(p

<
0.

00
1)

*

Po
st

ho
c

Te
st

Sp
lit

St
re

am
sv

s.
N

SG
(p

<
0.

00
1)

*
Sp

lit
St

re
am

sv
s.

N
SG

(p
<

0.
01
)

*

Tr
ee

m
ap

sv
s.

N
SG

(p
<

0.
00

1)
*

Tr
ee

m
ap

sv
s.

N
SG

(p
<

0.
01
)

*

To
ta

lT
im

e
pe

r
Ta

sk
M

ai
n

E
ff

ec
t

χ
2 (

2)
=

7.
80

,(
p
<

0.
05

)*
χ

2 (
2)

=
10
.5

8,
(p

<
0.

01
)*

Po
st

ho
c

Te
st

Sp
lit

St
re

am
sv

s.
N

SG
(p

<
0.

05
)

*
Sp

lit
St

re
am

sv
s.

Tr
ee

m
ap

s
(p

<
0.

01
)

*

N
SG

vs
.T

re
em

ap
s
(p

<
0.

05
)

*

E
rr

or
of

Fi
rs

tA
tt

em
pt

M
ai

n
E

ff
ec

t
χ

2 (
2)

=
26

.8
0,

(p
<

0.
00

1)
*

χ
2 (

2)
=

14
.6

0,
(p

<
0.

00
1)

*

Po
st

ho
c

Te
st

Sp
lit

St
re

am
sv

s.
N

SG
(p

<
0.

00
1)

*
Sp

lit
St

re
am

sv
s.

N
SG

(p
<

0.
01
)

*

Tr
ee

m
ap

sv
s.

N
SG

(p
<

0.
00

1)
*

Tr
ee

m
ap

sv
s.

N
SG

(p
<

0.
01
)

*

Ti
m

e
fo

r
Fi

rs
tA

tt
em

pt
M

ai
n

E
ff

ec
t

χ
2 (

2)
=

4.
75

,(
p
=

0.
09

)
χ

2 (
2)

=
15
.3

2,
(p

<
0.

00
1)

*

Po
st

ho
c

Te
st

N
SG

vs
.T

re
em

ap
s
(p

<
0.

00
1)

*

Sp
lit

St
re

am
sv

s.
Tr

ee
m

ap
s
(p

<
0.

05
)

*

Ta
bl

e
C

.1
:

T
he

st
ud

y
re

su
lts

fo
r

th
e

ta
sk

ty
pe

s
of

un
de

rs
ta

nd
in

g
hi

er
ar

ch
y

an
d

un
de

rs
ta

nd
in

g
ch

an
ge

s
of

hi
er

ar
ch

ie
s

ov
er

tim
e

us
in

g
a

no
n-

pa
ra

m
et

ri
c

K
ru

sk
al

-W
al

lis
te

st
an

d
a

W
ilc

ox
on

po
st

-h
oc

te
st

.
W

e
on

ly
sh

ow
th

e
pa

ir
w

is
e

co
m

pa
ri

so
n

in
th

e
po

st
ho

c
te

st
if

th
e

tw
o

co
nd

iti
on

s
ha

d
a

si
gn

ifi
ca

nt
di

ff
er

en
ce

.S
ig

ni
fic

an
tp

-v
al

ue
s

ar
e

m
ar

ke
d

w
ith

an
as

te
ri

sk
,a

nd
co

nd
iti

on
na

m
es

w
ith

su
pe

ri
or

pe
rf

or
m

an
ce

ar
e

sh
ow

n
in

bo
ld

.N
ot

e
th

at
th

e
re

su
lts

fr
om

th
e

no
de

-v
al

ue
co

m
pa

ri
so

n
ta

sk
ar

e
no

ti
nc

lu
de

d
in

th
is

ta
bl

e
fo

rs
im

pl
ic

ity
.

C

118 SplitStreams: A Visual Metaphor for Evolving Hierarchies

A Average Number of Attempts in Understanding
Hierarchies

B Total Time (s) per task in Understanding
Hierarchies

C Average Number of Attempts in Hierarchy over
Time

D Total Time (s) per task in Hierarchy over Time

Figure C.9: Distribution of the results for the average number of attempts and the total time
per task in seconds.

ferent in getting the correct answers, but people who used our technique could reach
the conclusion faster.

Another interesting finding shows that users of NSG spent significantly less time
on their first attempt compared to users of Treemaps, while also having a significantly
higher error of first response. This could mean that users of NSG were more confident,
hence providing their answer faster, but were wrong more often. One possible inter-
pretation of this result could be that stream-based techniques put less cognitive load on
users than Treemaps.

Our evaluation of node-value comparison tasks showed a significant difference for
error of first response (χ2(2)= 9.10, p< 0.05). The post-hoc test showed that users had
significantly lower errors with SplitStreams than with NSG (p < 0.01). This suggests
that our approach helps users understand changes of values over time better than with
NSG at the first glance. We do not have enough evidence to support or reject our
hypothesis that Treemaps users would perform worse than stream-based approaches in
this task.

C

C.7 Discussion 119

Overall, the evaluation was unable to detect major drawbacks in SplitStreams as
compared to the tested alternatives. Our findings provide evidence to support our hy-
potheses that by using SplitStreams, we can utilize the benefits of both NSG and Tree-
maps while avoiding some of their individual shortcomings.

C.7 Discussion

The technique presented in this paper can be used to generate one-dimensional tree-
maps over time, nested streamgraphs, as well as new representations introduced by x-
and y-margins.

The results of our study demonstrate that SplitStreams provide a similar perfor-
mance to Treemaps in tasks involving understanding hierarchical structures in an iso-
lated time period. This shows the approach can convey a similar level of detail in
terms of hierarchical structure while also providing additional information on changes
in the data. With both stream-based approaches providing statistically-significantly
faster user responses and better performance than Treemaps in tasks for understand-
ing changes over time, SplitStreams represents a general-purpose technique with good
performance in the tested use cases.

When it comes to scalability, the number of nodes and timesteps that can be visu-
alized by SplitStreams without introducing clutter are in the same order of magnitude
as in treemaps and nested streamgraphs. Based on our experience and using current
screen resolutions, a static hierarchy might display up to several hundred distinguish-
able nodes, but this capacity is highly diminished with the introduction of hierarchical
changes. While value changes, additions, and deletions of nodes can occur in higher
quantities, the visual overlap introduced by node movements can greatly affect the
user’s capabilities of reading the visualization. Although we try to handle visual clutter
through the introduction of a y-margin as a form of a semantic zoom, the exploration
of large datasets (e.g., the visualization of the whole MeSH taxonomy in section C.5)
requires additional mechanisms to ensure scalability. While SplitStreams and treemaps
allow for a better hierarchical perception in deep hierarchies, their introduced margins
require more space along the time axis than nested streamgraphs. To be precise, a
deeper hierarchy and larger margin definition requires more distance between individ-
ual timesteps (Equation C.1). On the other hand, the margin space can not only be
exploited to enhance and highlight the hierarchical structure with, e.g., halos or drop
shadows, but also eases the selection of a node of interest in an interactive environment.
The discontinuity along the temporal axis introduced by SplitStreams had no detectable
negative impact on user performance in our study, but might affect the aesthetic appeal
or visual complexity of the representation.

While we currently apply splits to all streams at every single point in time, we
could apply margins to a subset of streams and timepoints. Such an approach could,
for instance, emphasize hierarchical changes by only applying margins to streams for
which a hierarchical change happens. Conversely, since nested streams do a good job
at representing hierarchical changes, it would be possible to selectively emphasize the
hierarchy when no changes occur. We believe that such a selective application of our
technique could allow for an enhanced depiction of features of interest.

We introduced three different functions to apply x-margins at points of splits. While

C

120 SplitStreams: A Visual Metaphor for Evolving Hierarchies

these functions can be defined in many ways and adjusted based on specific user tasks,
their advantages and disadvantages deserve further study. The same is true for y-
spacing in particular because it affects node value perception.

Existing work has shown that the order of streams can be optimized to reduce the
number of stream crossings [121]. However, the proposed strategy is limited to data
where hierarchical changes occur along siblings. Our technique would benefit from an
adapted ordering algorithm to consider hierarchical changes of all types.

C.8 Conclusion

We presented a novel visual metaphor for the visualization of hierarchically structured
data over time. Our approach allows for the clear representation of hierarchies at certain
points in time, while simultaneously conveying the temporal evolution of data values
and changes in the hierarchy. Compared to existing techniques, all possible hierarchical
changes are supported and represented. The evaluation confirms that our approach
provides equivalent performance to treemaps and nested streamgraphs in the analyzed
tasks they perform best in and therefore makes a good general-purpose technique. We
provide a JavaScript library for the easy reproduction of all demonstrated examples and
for integration into other projects at https://github.com/cadanox/SplitStreams.

C.9 Acknowledgements

The research presented in this paper was supported by the MetaVis project (#250133)
funded by the Research Council of Norway. The work is also supported in part by NSF
1565725 and the DARPA XAI program N66001-17-2-4032.

Appendix

In the following we describe Algorithm 1 from section C.4.4 in pseudocode.

C

C.9 Acknowledgements 121

Algorithm 1 Streamgraph Generation
1: procedure TRAVERSESTREAM(node)
2: if All previous nodes of node have been visited then
3: mark node as visited
4: if Node has next node then
5: for all next do
6: if not next was visited then
7: t1← t(node)+0.5×HCR× (t(next)− t(node))
8: t2← t(next)−0.5×HCR× (t(next)− t(node))
9: draw straight stream from t(node) to t1

10: draw curved stream from t1 to t2
11: draw straight stream from t2 to t(next)
12: TRAVERSESTREAM(next)
13: else
14: tEnd← t(node)+0.5×HCR
15: draw end cap from t(node) to tEnd
16:
17: procedure DRAWSTREAMS

18: for all streams do
19: tStart← t(f irstNode)−0.5×HCR
20: draw start cap from tStart to t(firstNode)
21: TRAVERSESTREAM(root)

C

DD

Paper D

Organic Narrative Charts

Fabian Bolte and Stefan Bruckner

Abstract

S toryline visualizations display the interactions of groups and entities and their devel-
opment over time. Existing approaches have successfully adopted the general layout
from hand-drawn illustrations to automatically create similar depictions. Ward Shel-
ley is the author of several diagrammatic paintings that show the timeline of art-related
subjects, such as Downtown Body, a history of art scenes. His drawings include many
stylistic elements that are not covered by existing storyline visualizations, like links
between entities, splits and merges of streams, and tags or labels to describe the indi-
vidual elements. We present a visualization method that provides a visual mapping for
the complex relationships in the data, creates a layout for their display, and adopts a
similar styling of elements to imitate the artistic appeal of such illustrations. We com-
pare our results to the original drawings and provide an open-source authoring tool
prototype.

D.1 Introduction

Movie Narrative Charts [146] are hand-drawn illustrations that display characters as
streams and show their interactions in different locations over time. They have inspired
a multitude of works in the visualization community and several attempts have been
made to create digital replicas. In the same manner, we were inspired by Ward Shel-
ley’s diagrammatic paintings, which cover complex relationships and a multitude of
textual annotations to display the evolution of art related subjects. We aim to create a
digital chart that captures the organic appearance, displays the complex relationships
between individual entities, and imitates the artistic appeal of these drawings. The dig-
ital support for such diagrams would not only allow for the fast creation of visually
appealing results from varying data sources, but further ease the lengthy planning pro-
cess that artists undergo to create a single piece of work. The provision of an authoring

This article was published in Eurographics 2020 - Short Papers (2020).

D

124 Organic Narrative Charts

Figure D.1: Downtown Body by Ward Shelley [16]

tool for artists could allow them to focus more on the artistic part, such as the creation
of a general theme and bigger picture, that automatic systems will not be able to create.

We contribute a more organic layout for narrative charts that combines nesting,
splits, merges, parent changes, and multiple label types. We apply image processing
techniques to create a visual appeal similar to hand-drawn paintings by artists, while
still complying with the SVG standard for further editing. Our prototype of an interac-
tive authoring tool is made publicly available.

D.2 Related Work

While a lot of research deals with time-related data, layouting techniques, and arts, we
put our focus on stream-based visualizations.

Ogawa and Ma [150] automated the creation of narrative charts, whose aesthetics
were improved by Tanahashi and Ma [192]. StoryFlow [135] applies an adaption of a
layered graph layout [189] to improve the performance of the aesthetics optimization.
Finally, Tang et al. [193] analyzed the differences between automatic layout approaches
and artist desires and developed iStoryline as an authoring tool for the creation of sto-
ryline visualizations. In narrative charts, streams move together in groups, but can not
be individually divided or merged. In our case, on the other hand, we are looking at
streams with changing height values that feature direct connections, merges, splits, and
a predominant amount of text labels.

TextFlow [57] and Xu et al. [230] display topic splits and merges based on the
ThemeRiver metaphor [81], facilitate a force layout to generate aesthetically pleasing
results, and integrate word clouds into flow charts. Our approach adds an artistic style
closer to hand-drawn charts, supports a larger amount of text labels directly integrated
into the layout algorithm, and provides interactions for an authoring tool prototype.

D

D.3 Overview 125

D.3 Overview

Ward Shelley’s diagrammatic paintings typically describe the evolution of a given topic
over time. Downtown Body (Figure D.1), for example, shows how different branches
of art, like theater, music, and visual arts, changed and interacted throughout the 20th
century. His drawings not only provide a general overview of topics and their relevance
over the years, but further highlight individual milestones of every time period. By
analyzing his work we identified three elements that define the main structure of his
paintings. We will in the following refer to them as streams, labels, and links. We
further analyzed the artistic style of the paintings to take inspiration for creating similar
digital results.
Streams: All elements in Shelley’s paintings follow a common timeline. A stream is
defined for a certain period of time and describes one of the main topics of interest. For
example, one stream might represent Literature from 1898 until the year 2000, while
another stream called Film only starts to show in the year 1942. Streams are repre-
sented by colored lines whose thickness can change over time to convey the changing
relevance of this topic (Figure D.2B A). In addition to the main topics, there might be
relevant subtopics that the artist wants to highlight. The New York School and Early
Gentrification in Visual Arts can be seen as such an example. They are typically rep-
resented by a stream of slightly different shade than the main topic, nested inside the
main stream (Figure D.2B C).

Streams and their represented topics can merge and split at specific points in time.
When multiple streams merge, they will be represented by a single line after the given
timepoint. In the same manner, a splitting stream will be drawn as multiple lines after
the given point in time and represent multiple topics.
Labels: One of the major elements that contributes to the vast amount of information
these drawings contain is text. Every stream is labeled by its represented topic when
it appears. Additional text labels are describing the narrative of the stream by naming
major events or core contributions to that field. In the Literature topic, such labels
include authors like Emma Goldman, general movements like the Beat Generation (The
Beats), newsletters, book stores, and events like Poetry Slams. The majority of labels is
connected to at least one of the topic streams and referring to a certain point or period
in time.

Labels come in many different forms and shapes, but can be classified into three
major classes: outside, inside, and on top of streams. An example for each type can be
found in Figure D.2B. Outside labels are typically surrounded by another shape that is
connected to the referred to stream through a line in the same color. Inside labels have a
shape similar to outside labels, but are missing the connecting line. Instead, they touch
the stream they refer to, or are drawn inside it. Their background color is different to
the color of the stream, but often similar in hue. A label drawn on top of streams is not
surrounded by a shape, but directly drawn onto the stream itself. Its text bends along
the overall stream shape.

All text labels are black with all letters capitalized. Their font sizes can vary to
emphasize on the importance of individual elements. While inside and outside labels
can feature arbitrary surrounding shapes, they are mainly surrounded by ellipses and
rectangles. By utilizing unique shapes for specific labels they can stand out from the
rest.

D

126 Organic Narrative Charts

Links: Links communicate the connection of two entities, joining streams with
streams, labels with labels, labels with streams, and even other links to streams or
labels. They are defined by a start and an end point, each of which is defined by a point
in time and a connected entity. If the entities at the start and end point feature different
colors, the link is typically drawn in the color of the start entity. Links can further be
drawn as thin black lines or arrows. Compared to streams, links typically do not change
in size and rarely contain labels. Furthermore, while streams typically exist through-
out a larger time period, links are rather short-lived, which leads to a general difference
in appearance. While streams follow the time axis of the diagram, links are typically
almost perpendicular to it.
Style: Ward Shelley’s paintings feature an iconic time axis where time is discretized
into blocks of alternating color. These blocks are drawn on the time axis itself, as well
as in the background of the painting, where they can use different colors and a different
discretization. Colors on the time axis are generally more saturated.

All shapes are typically filled by a solid color categorizing the topic of the element.
Nested streams utilize a different shade of the same color to appear similar. The el-
ements feature a strong black outline, as well as an inner and outer shadow towards
the bottom left. The general shape of elements appears organic and follows a common
scheme to create a bigger picture like blood vessels in the body (Downtown Body), or a
tentacled beast (History of Science Fiction). This reoccurring schematic style inspired
the name for our organic narrative charts. In some of the drawings we found additional
complimentary embellishments like pictures of human bodies (Carolee Schneemann)
or album covers (Frank Zappa).

D.4 Method

Graph Layout: We transform our data into a directed acyclic graph (DAG), similar
to approaches found in TextFlow [57] and StoryFlow [135], to benefit from existing
graph drawing algorithms when creating a layout. For each stream, we create one node
at each discrete point in time (e.g., one node per year) within the time interval it is
defined in and connect consecutive nodes via edges. For each label, we create a node at
the referred to point in time, as well as an equal amount of nodes to the left and right,
based on the length of the text. This representation of labels by several nodes enables
the bending of text along the time axis. For outside labels we add an additional edge to
a stream node.

We build on top of the SplitStreams [32] approach to support a nested graph model,
where every node can contain multiple other nodes, as well as splits and merges of
streams. We utilize the same nesting mechanism to support labels inside and on top
of streams. Links are represented by an edge between two nodes, which must refer to
different timepoints to satisfy the DAG constraints. If links span over several points in
time, we generate intermediate link nodes as described by Sugiyama et al. [189].

We utilize a force layout to generate the organic appearance of streams. Each node is
fixed in the time dimension and its position can only vary in the second dimension based
on the applied forces. Initially, all nodes are stacked above each other in the same order
as defined in the data. A gravitational force applied to all nodes pushes them towards
the center of the picture. A repulsive force between all nodes increases the spacing

D

D.4 Method 127

Streams

ID t0 t1 color size parent
A 2 6 #D73
B 3 9 blue 5/10
C 4 6 purple B

Links
from t0 to t1 merge

A 3 B true
C 4 A

Lables

stream t text type size(em)
A 4 inside label in 3
B 6 outside ... out 5
B 7 ... on top ... on 3

A CSV data. The specified data format enables a simple definition of all diagram elements. Each stream
has an ID and is defined in a given time period. Size is a list of tuples, where the first element refers to
a point in time and the second to the size. A parent is only defined for nested streams.

B Visual result of the CSV data given in a. The force layout found a good separation of nodes and the
artistic stylization was applied. Hovering over A shows the draggable button to change the node size at
the given timepoint.

Figure D.2: We defined 3 streams A, B, C, where C is nested inside B. B has a defined size of
10 at timepoint 5, and its size at other timepoints is calculated by linear interpolation between
10 and the default value (5) at the start and end point. C has a link to A, which results in a small
representation of C nested inside A. A has a merge link to B, which means that no such nested
node is created. We define 3 labels of different types, resulting in different representations.

D

128 Organic Narrative Charts

between individual streams and labels. We make sure that nodes stay inside the picture
by introducing a collision detection at the border. A similar constraint is applied for
nested nodes, so that they can not escape their parent elements. For simplification,
collisions are not computed for actual stream shapes, but based on the individual nodes
in each timestep.

We introduce different forces along different edge types for a fine-grained layout
control. Edges between nodes of the same stream feature rather strong forces to keep
the streams as straight as possible and to reduce stream crossings. These forces can be
loosened to increase the wiggle of lines and thereby change the general stream appear-
ance. Edges between labels and streams make sure that labels are drawn in close prox-
imity to their connected stream. Finally, links between different entities keep merged,
split, and connected streams closer together. By modifying their force, we can control
how likely a stream is to bend for such a connection.
Artistic Style: We draw Cubic Bezier curves between connected nodes of the graph.
Each stream is given a solid color, on top of which we apply image processing tech-
niques to acquire the desired style. We multiply the colored stream with a grey scale
fractal noise to integrate irregularities. The colors appear more hand-drawn than the
solid color that is free from any imperfections. We add a strong black outline and both
an inner and an outer shadow to each element of the chart. The latter are achieved by
multiplying each element’s pixel image with a black and offset copy of itself.
Interactions: The manual creation of CSV data for the generation of organic narrative
charts might be tedious. We therefore designed several interaction techniques that we
consider to be crucial for the development of an authoring tool for artists.

By clicking and holding the mouse button (or touch) in an empty area and dragging
it over the chart, we can define a start and end point for a new stream. The same
drag&drop interaction can be utilized to create a link between two entities. If only
one of the two points has an underlying entity and the other lies in an empty area, this
interaction will create a new stream and a link connecting both entities. The user can
define if the created connection is supposed to merge (or split) the connected stream,
or if the new stream will be nested at the connection point.

When hovering over a stream, a draggable button will be shown that allows for the
adjustment of the stream size at that point in time. In Figure D.2B we hover over stream
A between timesteps 2 and 3. The size of each stream node is calculated through linear
interpolation between consecutive size definitions and a default value at the start and
end point. Clicking at a stream will create a label at that point in time and a popup
window enables the user to enter the desired text and type for the label.
Implementation: Our prototype implementation is based on D3 [34] and standard web
technologies (JavaScript ES6, HTML5, CSS3). Additionally to the interactions men-
tioned, we allow for the direct manipulation of the CSV data for detailed changes and
update the chart on every change. We utilize the D3-integrated force layout and draw
streams between connected nodes through the SplitStreams [32] library. New nodes
are added into the existing graph and the force layout runs based on the previous node
positions to minimize calculation times. We utilize SVG filters as image processing
techniques to apply the artistic style. The output is in the standard SVG format, which
allows for further processing in common vector graphics tools. The result of our tech-
nique applied to a manually created data set mirroring the data in the Downtown Body
painting can be seen in Figure D.3.

D

D.5 Discussion and Limitations 129

Figure D.3: Digital recreation of Ward Shelley’s Downtown Body, including 44 streams, 61
links, and 369 labels.

D.5 Discussion and Limitations

The creation of our prototype yielded results of promising visual quality to improve
existing narrative charts and added an artistic appeal that is normally only achieved by
hand-drawn diagrams. One of the main problems we face in the creation process is
the correct definition of parameters for the force layout to properly separate individual
nodes. If the authoring tool is meant to be used by the general public, they should
not be exposed to a manual control of these parameters, but instead be given a fully-
automated, or at least largely simplified, control sequence. This is especially true for
the positioning of labels, which might not be readable when curves bend too strong or
overlaps occur.

We currently do not provide means for the integration of images for visual embel-
lishment, and can not bend the time axis as featured in some of Ward Shelley’s works.
We can not capture the thematic content of the diagram to create a bigger picture like
artists can convey. We therefore see our application more as a planning tool for artists
to simplify the creation of such charts, as well as an option to easily create visually
appealing diagrams from digital data.

D.6 Conclusion

We presented organic narrative charts, a digital recreation of Ward Shelley’s diagram-
matic paintings from data, that is capable of conveying the complex relationships of
entities in his work and provides a similar visual appeal. We implemented a prototype
of an authoring tool and compared the digital results to the original work. We provide
the full source code at https://github.com/cadanox/orcha.

D

«Are we done?»
Fabian

D

Bibliography

[1] Ace. https://ace.c9.io/. Accessed: 2018-12-11. B.5

[2] Allen developing mouse brain atlas. https://developingmouse.brain-map.
org/. Accessed: 2020-04-17. 4.2

[3] Apache subversion. https://subversion.apache.org/. Accessed: 2018-12-
11. B.4.1

[4] Dear imgui. https://github.com/ocornut/imgui. Accessed: 2019-10-14.
C.5.2

[5] diff2html. https://diff2html.xyz/. Accessed: 2018-12-11. B.5

[6] Git. https://git-scm.com/. Accessed: 2018-12-11. B.4.1, B.5

[7] GoldenLayout. http://golden-layout.com/. Accessed: 2018-12-11. B.5

[8] Leaflet. https://leafletjs.com/. Accessed: 2020-04-17. 4.2, 4.4

[9] libgit2. https://libgit2.github.com/. Accessed: 2018-12-11. B.5

[10] Mesh. https://www.nlm.nih.gov/mesh/meshhome.html. Accessed: 2019-10-
10. C.5.1

[11] Observable. https://observablehq.com/. Accessed: 2019-04-29. B.2

[12] Overleaf. https://www.overleaf.com/. Accessed: 2018-12-11. B.2

[13] ShaderToy. https://www.shadertoy.com/. Accessed: 2018-12-11. 3.2.1, B.1,
B.2, B.8

[14] VisGuides. http://visguides.org/. Accessed: 2019-08-27. A.4

[15] Vue.js. https://vuejs.org/. Accessed: 2019-03-31. C.4.5

[16] Ward Shelley. http://www.wardshelley.com/. Accessed: 2019-12-20. 3.3.2,
4.6, D.1

[17] AHRENS, J., GEVECI, B., AND LAW, C. ParaView: An end-user tool for large-
data visualization. In The Visualization Handbook. Elsevier, 2005, pp. 717–731.
2.2, 2.2, B.2, B.8

https://ace.c9.io/
https://developingmouse.brain-map.org/
https://developingmouse.brain-map.org/
https://subversion.apache.org/
https://github.com/ocornut/imgui
https://diff2html.xyz/
https://git-scm.com/
http://golden-layout.com/
https://leafletjs.com/
https://libgit2.github.com/
https://www.nlm.nih.gov/mesh/meshhome.html
https://observablehq.com/
https://www.overleaf.com/
https://www.shadertoy.com/
http://visguides.org/
https://vuejs.org/
http://www.wardshelley.com/

D

132 BIBLIOGRAPHY

[18] ALBERS, D., DEWEY, C., AND GLEICHER, M. Sequence surveyor: Leveraging
overview for scalable genomic alignment visualization. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (2011), 2392–2401. 2.2

[19] ALTINTAS, I., BERKLEY, C., JAEGER, E., JONES, M., LUDASCHER, B., AND
MOCK, S. Kepler: An extensible system for design and execution of scientific
workflows. In Proceedings of the International Conference on Scientific and
Statistical Database Management (2004), pp. 423–424. B.2

[20] BALL, T., AND EICK, S. Software visualization in the large. IEEE Computer
29, 4 (1996), 33–43. B.2

[21] BANGOR, A., KORTUM, P., AND MILLER, J. Determining what individual
SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies
4, 3 (2009), 114–123. 4.1, B.7

[22] BANGOR, A., KORTUM, P. T., AND MILLER, J. T. An empirical evaluation of
the system usability scale. International Journal of Human–Computer Interac-
tion 24, 6 (2008), 574–594. A.4

[23] BARNES, C., AND ZHANG, F.-L. A survey of the state-of-the-art in patch-based
synthesis. Computational Visual Media 3, 1 (2017), 3–20. 2.3

[24] BATEMAN, S., MANDRYK, R. L., GUTWIN, C., GENEST, A., MCDINE, D.,
AND BROOKS, C. Useful junk?: The effects of visual embellishment on com-
prehension and memorability of charts. In Proceedings of ACM CHI (2010),
p. 2573–2582. 3.1, A.3.4

[25] BAUR, D., LEE, B., AND CARPENDALE, S. TouchWave: Kinetic multi-touch
manipulation for hierarchical stacked graphs. In Proceedings of the ACM Inter-
national Conference on Interactive Tabletops and Surfaces (2012), pp. 255–264.
C.2

[26] BAVOIL, L., CALLAHAN, S. P., CROSSNO, P. J., FREIRE, J., SCHEIDEGGER,
C. E., SILVA, C. T., AND VO, H. T. VisTrails: Enabling interactive multiple-
view visualizations. In Proceedings of IEEE VIS (2005), pp. 135–142. 2.2, 2.4,
B.2, B.4.1

[27] BEHRISCH, M., BACH, B., HUND, M., DELZ, M., VON RÜDEN, L., FEKETE,
J.-D., AND SCHRECK, T. Magnostics: Image-based search of interesting matrix
views for guided network exploration. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (2016), 31–40. 3.1

[28] BEHRISCH, M., BLUMENSCHEIN, M., KIM, N. W., SHAO, L., EL-ASSADY,
M., FUCHS, J., SEEBACHER, D., DIEHL, A., BRANDES, U., PFISTER, H.,
SCHRECK, T., WEISKOPF, D., AND KEIM, D. A. Quality metrics for infor-
mation visualization. Computer Graphics Forum 37, 3 (2018), 625–662. A.3.1,
A.3.2, A.2, A.4

D

BIBLIOGRAPHY 133

[29] BERTINI, E., AND SANTUCCI, G. Quality metrics for 2D scatterplot graph-
ics: Automatically reducing visual clutter. In Proceedings of the International
Symposium on Smart Graphics (2004), pp. 77–89. A.3.2

[30] BERTINI, E., AND SANTUCCI, G. Improving 2D scatterplots effectiveness
through sampling, displacement, and user perception. In Proceedings of IVAPP
(2005), pp. 826–834. A.3.2

[31] BERTINI, E., TATU, A., AND KEIM, D. Quality metrics in high-dimensional
data visualization: An overview and systematization. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (2011), 2203–2212. B.2

[32] BOLTE, F., NOURANI, M., RAGAN, E. D., AND BRUCKNER, S. SplitStreams:
A visual metaphor for evolving hierarchies. IEEE Transactions on Visualization
and Computer Graphics (2020). D.4

[33] BORKIN, M. A., VO, A. A., BYLINSKII, Z., ISOLA, P., SUNKAVALLI, S.,
OLIVA, A., AND PFISTER, H. What makes a visualization memorable? IEEE
Transactions on Visualization and Computer Graphics 19, 12 (2013), 2306–
2315. 1.1, 2.3, A.3.4

[34] BOSTOCK, M., OGIEVETSKY, V., AND HEER, J. D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011),
2301–2309. B.5, C.4.5, D.4

[35] BREHMER, M., AND MUNZNER, T. A multi-level typology of abstract visual-
ization tasks. IEEE Transactions on Visualization and Computer Graphics 19,
12 (2013), 2376–2385. A.1

[36] BRODLIE, K., POON, A., WRIGHT, H., BRANKIN, L., BANECKI, G., AND
GAY, A. GRASPARC - A problem solving environment integrating computation
and visualization. In Proceedings of IEEE VIS (1993), pp. 102–109. 2.1

[37] BROOKE, J. SUS – A quick and dirty usability scale. In Usability Evaluation in
Industry, vol. 189. CRC Press, 1996, pp. 4–7. 4.1, A.4

[38] BRUCKNER, S., ISENBERG, T., ROPINSKI, T., AND WIEBEL, A. A model of
spatial directness in interactive visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 25, 8 (2019), 2514–2528. 3.1, A.3.3

[39] BRUCKNER, S., AND MÖLLER, T. Result-driven exploration of simulation pa-
rameter spaces for visual effects design. IEEE Transactions on Visualization and
Computer Graphics 16, 6 (2010), 1468–1476. 3.2.2

[40] BURCH, M., BECK, F., AND DIEHL, S. Timeline Trees: Visualizing sequences
of transactions in information hierarchies. In Proceedings of the Working Con-
ference on Advanced Visual Interfaces (2008), pp. 75–82. C.2

[41] BURCH, M., BLASCHECK, T., LOUKA, C., AND WEISKOPF, D. Visualizing
hierarchy changes by dynamic indented plots. In Proceedings of IVAPP (2014),
pp. 91–98. C.2

D

134 BIBLIOGRAPHY

[42] BURCH, M., AND WEISKOPF, D. Visualizing dynamic quantitative data in
hierarchies. In Proceedings of IVAPP (2011), pp. 177–186. C.2

[43] BYRON, L., AND WATTENBERG, M. Stacked graphs – Geometry & aesthetics.
IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1245–
1252. 1, 3.1, A.3.2, C.2

[44] CALLAHAN, S. P., FREIRE, J., SCHEIDEGGER, C. E., SILVA, C. T., AND VO,
H. T. Towards provenance-enabling paraview. In Proceedings of the Interna-
tional Provenance and Annotation Workshop (2008), pp. 120–127. 2.2

[45] CAMISETTY, A., CHANDURKAR, C., SUN, M., AND KOOP, D. Enhancing
web-based analytics applications through provenance. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2018), 131–141. B.2

[46] CARD, S. K., SUH, B., PENDLETON, B. A., HEER, J., AND BODNAR, J. W.
TimeTree: Exploring time changing hierarchies. In Proceedings of IEEE VAST
(2006), pp. 3–10. C.2

[47] CHEN, M., AND GOLAN, A. What may visualization processes optimize? IEEE
Transactions on Visualization and Computer Graphics 22, 12 (2015), 2619–
2632. A.3.3

[48] CHEN, M., GRINSTEIN, G., JOHNSON, C. R., KENNEDY, J., AND TORY, M.
Pathways for theoretical advances in visualization. IEEE Computer Graphics
and Applications 37, 4 (2017), 103–112. 1, A.4

[49] CHEN, M., AND JAENICKE, H. An information-theoretic framework for vi-
sualization. IEEE Transactions on Visualization and Computer Graphics 16, 6
(2010), 1206–1215. A.3.3

[50] CHEN, M., WALTON, S., BERGER, K., THIYAGALINGAM, J., DUFFY, B.,
FANG, H., HOLLOWAY, C., AND TREFETHEN, A. E. Visual multiplexing.
Computer Graphics Forum 33, 3 (2014), 241–250. 2.2, A.3.3

[51] CHI, E. H.-H., RIEDL, J., BARRY, P., AND KONSTAN, J. Principles for infor-
mation visualization spreadsheets. IEEE Computer Graphics and Applications,
4 (1998), 30–38. 2.2

[52] CLAESSEN, J. H., AND VAN WIJK, J. J. Flexible linked axes for multivariate
data visualization. IEEE Transactions on Visualization and Computer Graphics
17, 12 (2011), 2310–2316. 2.2

[53] CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, experi-
mentation, and application to the development of graphical methods. Journal of
the American Statistical Association 79, 387 (1984), 531–554. 3.1, A.3.1

[54] COLLBERG, C., KOBOUROV, S., NAGRA, J., PITTS, J., AND WAMPLER, K.
A system for graph-based visualization of the evolution of software. In Proceed-
ings of ACM SOFTVIS (2003), pp. 77–86. B.2

D

BIBLIOGRAPHY 135

[55] CONNOR, C. E., EGETH, H. E., AND YANTIS, S. Visual attention: Bottom-up
versus top-down. Current Biology 14, 19 (2004), R850–R852. A.3.1

[56] CUENCA, E., SALLABERRY, A., WANG, F. Y., AND PONCELET, P. Multi-
Stream: A multiresolution streamgraph approach to explore hierarchical time se-
ries. IEEE Transactions on Visualization and Computer Graphics 24, 12 (2018),
3160–3173. C.1, C.2

[57] CUI, W., LIU, S., TAN, L., SHI, C., SONG, Y., GAO, Z., QU, H., AND TONG,
X. Textflow: Towards better understanding of evolving topics in text. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (2011), 2412–
2421. C.2, D.2, D.4

[58] CUI, W., LIU, S., WU, Z., AND WEI, H. How hierarchical topics evolve in
large text corpora. IEEE Transactions on Visualization and Computer Graphics
20, 12 (2014), 2281–2290. C.1, C.2

[59] D’AMBROS, M., LANZA, M., AND LUNGU, M. Visualizing co-change infor-
mation with the evolution radar. IEEE Transactions on Software Engineering
35, 5 (2009), 720–735. B.2

[60] DAUGMAN, J. G. Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters. Journal of
the Optical Society of America 2, 7 (1985), 1160–1169. A.3.1

[61] DEMIRALP, Ç., SCHEIDEGGER, C. E., KINDLMANN, G. L., LAIDLAW, D. H.,
AND HEER, J. Visual embedding: A model for visualization. IEEE Computer
Graphics and Applications 34, 1 (2014), 10–15. 3.1, A.3.3

[62] DIBIA, V., AND DEMIRALP, Ç. Data2vis: Automatic generation of data visual-
izations using sequence-to-sequence recurrent neural networks. IEEE Computer
Graphics and Applications 39, 5 (2019), 33–46. 2.2

[63] DIEHL, A., ABDUL-RAHMAN, A., EL-ASSADY, M., BACH, B., KEIM, D.,
AND CHEN, M. VisGuides: A forum for discussing visualization guidelines. In
Proceedings of EuroVis (Short Papers) (2018), pp. 61–65. A.4

[64] DOU, W., YU, L., WANG, X., MA, Z., AND RIBARSKY, W. Hierarchical-
Topics: Visually exploring large text collections using topic hierarchies. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (2013), 2002–
2011. C.2

[65] EICK, S. G., STEFFEN, J. L., AND SUMNER, E. E. SeeSoft: a tool for visualiz-
ing line-oriented software statistics. IEEE Transactions on Software Engineering
18, 11 (1992), 957–968. B.2

[66] FILONIK, D., AND BAUR, D. Measuring aesthetics for information visualiza-
tion. In Proceedings of the International Conference on Information Visualiza-
tion (2009), pp. 579–584. A.3.4

D

136 BIBLIOGRAPHY

[67] FIŠER, J., JAMRIŠKA, O., LUKÁČ, M., SHECHTMAN, E., ASENTE, P., LU,
J., AND SỲKORA, D. StyLit: Illumination-guided example-based stylization of
3D renderings. ACM Transactions on Graphics 35, 4 (2016), 1–11. 2.3, 2.7

[68] FRIGO, O., SABATER, N., DELON, J., AND HELLIER, P. Split and match:
Example-based adaptive patch sampling for unsupervised style transfer. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016), pp. 553–561. 2.3

[69] GATYS, L. A., ECKER, A. S., AND BETHGE, M. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2016), pp. 2414–2423. 2.3

[70] GERMAN, D. M. An empirical study of fine-grained software modifications.
In Proceedings of the IEEE International Conference on Software Maintenance
(2004), pp. 316–325. B.2

[71] GILSON, O., SILVA, N., GRANT, P. W., AND CHEN, M. From web data to
visualization via ontology mapping. Computer Graphics Forum 27, 3 (2008),
959–966. 2.2

[72] GLEICHER, M. Considerations for visualizing comparison. IEEE Transactions
on Visualization and Computer Graphics 24, 1 (2017), 413–423. 2.2

[73] GLEICHER, M., ALBERS, D., WALKER, R., JUSUFI, I., HANSEN, C., AND
ROBERTS, J. Visual comparison for information visualization. Information
Visualization 10, 4 (2011), 289–309. 2.2, 2.3, B.4.2

[74] GOTZ, D., AND WEN, Z. Behavior-driven visualization recommendation.
In Proceedings of the International Conference on Intelligent User Interfaces
(2009), pp. 315–324. 2.2

[75] GOUGH, P. From the analytical to the artistic: A review of literature on infor-
mation visualization. Leonardo 50, 1 (2017), 47–52. 2.3

[76] GRAHAM, M., AND KENNEDY, J. A survey of multiple tree visualisation. In-
formation Visualization 9, 4 (2010), 235–252. 2.2

[77] HABER, R. B., AND MCNABB, D. A. Visualization idioms: A conceptual
model for scientific visualization systems. In Visualization in Scientific Comput-
ing. IEEE, 1990, pp. 74–93. 2.2

[78] HAHN, S., TRÜMPER, J., MORITZ, D., AND DÖLLNER, J. Visualization of
varying hierarchies by stable layout of Voronoi treemaps. In Proceedings of
IVAPP (2014), pp. 50–58. C.1, C.2

[79] HANSEN, C. D., AND JOHNSON, C. R. Visualization handbook. Elsevier, 2011.
B.3

[80] HARRISON, L., REINECKE, K., AND CHANG, R. Infographic aesthetics: De-
signing for the first impression. In Proceedings of ACM CHI (2015), pp. 1187–
1190. 1.1, 2.3, 3.1, A.3.4, A.4

D

BIBLIOGRAPHY 137

[81] HAVRE, S., HETZLER, E., WHITNEY, P., AND NOWELL, L. Themeriver: Vi-
sualizing thematic changes in large document collections. IEEE Transactions on
Visualization and Computer Graphics 8, 1 (2002), 9–20. C.1, C.2, D.2

[82] HEALEY, C., AND ENNS, J. Attention and visual memory in visualization and
computer graphics. IEEE Transactions on Visualization and Computer Graphics
18, 7 (2012), 1170–1188. A.3.1

[83] HEALEY, C. G. Formalizing artistic techniques and scientific visualization for
painted renditions of complex information spaces. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (2001), pp. 371–376. 2.3

[84] HEALEY, C. G., BOOTH, K. S., AND ENNS, J. T. High-speed visual estimation
using preattentive processing. ACM Transactions on Computer-Human Interac-
tion 3, 2 (1996), 107–135. A.3.4

[85] HEER, J., MACKINLAY, J. D., STOLTE, C., AND AGRAWALA, M. Graphical
histories for visualization: Supporting analysis, communication, and evaluation.
IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1189–
1196. B.2

[86] HEER, J., VAN HAM, F., CARPENDALE, S., WEAVER, C., AND ISENBERG, P.
Creation and collaboration: Engaging new audiences for information visualiza-
tion. In Information Visualization. Springer, 2008, pp. 92–133. 3.2

[87] HEINE, C., LEITTE, H., HLAWITSCHKA, M., IURICICH, F., DE FLORIANI,
L., SCHEUERMANN, G., HAGEN, H., AND GARTH, C. A survey of topology-
based methods in visualization. Computer Graphics Forum 35, 3 (2016), 643–
667. C.1

[88] HENRY, N., FEKETE, J.-D., AND MCGUFFIN, M. J. Nodetrix: A hybrid visu-
alization of social networks. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1302–1309. 2.2

[89] HERSCHEL, M., DIESTELKÄMPER, R., AND BEN LAHMAR, H. A survey on
provenance: What for? What form? What from? The VLDB Journal 26, 6
(2017), 881–906. B.2

[90] HOFFSWELL, J., SATYANARAYAN, A., AND HEER, J. Visual debugging tech-
niques for reactive data visualization. Computer Graphics Forum 35, 3 (2016),
271–280. B.2

[91] HOLMQUIST, L. E., AND SKOG, T. Informative art: Information visualization
in everyday environments. In Proceedings of GRAPHITE (2003), pp. 229–235.
2.3

[92] HOLTEN, D., AND VAN WIJK, J. J. Visual comparison of hierarchically orga-
nized data. Computer Graphics Forum 27, 3 (2008), 759–766. B.2

[93] HU, K., BAKKER, M. A., LI, S., KRASKA, T., AND HIDALGO, C. Vizml: A
machine learning approach to visualization recommendation. In Proceedings of
ACM CHI (2019), pp. 1–12. 2.2

D

138 BIBLIOGRAPHY

[94] HUANG, M. L., HUANG, T.-H., AND ZHANG, J. TreemapBar: Visualizing
additional dimensions of data in bar chart. In Proceedings of the International
Conference on Information Visualization (2009), pp. 98–103. 2.2

[95] ISAACS, K. E., GIMÉNEZ, A., JUSUFI, I., GAMBLIN, T., BHATELE, A.,
SCHULZ, M., HAMANN, B., AND BREMER, P.-T. State of the Art of Per-
formance Visualization. In EuroVis - STARs (2014), pp. 141–160. B.2

[96] ISENBERG, P., AND CARPENDALE, S. Interactive tree comparison for co-
located collaborative information visualization. IEEE Transactions on Visual-
ization and Computer Graphics 13, 6 (2007), 1232–1239. C.2

[97] ITTI, L., KOCH, C., AND NIEBUR, E. A model of saliency-based visual at-
tention for rapid scene analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20, 11 (1998), 1254–1259. A.3.1

[98] JAENICKE, H., AND CHEN, M. A salience-based quality metric for visualiza-
tion. Computer Graphics Forum 29, 3 (2010), 1183–1192. 3.1, A.3.1

[99] JÄNICKE, H., WEIDNER, T., CHUNG, D., LARAMEE, R. S., TOWNSEND, P.,
AND CHEN, M. Visual reconstructability as a quality metric for flow visualiza-
tion. Computer Graphics Forum 30, 3 (2011), 781–790. A.1

[100] JANKUN-KELLY, T., AND MA, K.-L. A spreadsheet interface for visualization
exploration. In Proceedings of IEEE VIS (2000), pp. 69–76. B.3.1

[101] JANKUN-KELLY, T., AND MA, K.-L. Visualization exploration and encapsu-
lation via a spreadsheet-like interface. IEEE Transactions on Visualization and
Computer Graphics 7, 3 (2001), 275–287. 2.1, B.2

[102] JANKUN-KELLY, T. J., MA, K. L., AND GERTZ, M. A model for the visual-
ization exploration process. In Proceedings of IEEE VIS (2002), pp. 323—-330.
2.1

[103] JANKUN-KELLY, T. J., MA, K.-L., AND GERTZ, M. A model and framework
for visualization exploration. IEEE Transactions on Visualization and Computer
Graphics 13, 2 (2007), 357–369. 2.1, A.3.3

[104] JARDINE, N., ONDOV, B. D., ELMQVIST, N., AND FRANCONERI, S. The
perceptual proxies of visual comparison. IEEE Transactions on Visualization
and Computer Graphics 26, 1 (2019), 1012–1021. 2.2

[105] JAVED, W., AND ELMQVIST, N. Exploring the design space of composite visu-
alization. In Proceedings of IEEE PacificVis (2012), pp. 1–8. 2.2

[106] JOHANSSON, S., AND JOHANSSON, J. Interactive dimensionality reduction
through user-defined combinations of quality metrics. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 993–1000. 3.1

[107] JOHNSON, B., AND SHNEIDERMAN, B. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In Proceedings of IEEE
VIS (1991), pp. 284–291. C.2

D

BIBLIOGRAPHY 139

[108] JOHNSON, B. S. Treemaps: Visualizing hierarchical and categorical data. PhD
thesis, Department of Computer Science, University of Maryland, College Park,
MD, 1993. C.2

[109] JOHNSON, S., SAMSEL, F., ABRAM, G., OLSON, D., SOLIS, A. J., HERMAN,
B., WOLFRAM, P. J., LENGLET, C., AND KEEFE, D. F. Artifact-based render-
ing: Harnessing natural and traditional visual media for more expressive and
engaging 3D visualizations. IEEE Transactions on Visualization and Computer
Graphics 26, 1 (2019), 492–502. 2.3, 2.8

[110] KEY, A., HOWE, B., PERRY, D., AND ARAGON, C. Vizdeck: Self-organizing
dashboards for visual analytics. In Proceedings of ACM SIGMOD (2012),
pp. 681–684. 2.2

[111] KHAN, T., BARTHEL, H., EBERT, A., AND LIGGESMEYER, P. Visualization
and evolution of software architectures. In Proceedings of the Workshop on
Visualization of Large and Unstructured Data Sets (2011), pp. 25–42. B.2

[112] KIM, Y., AND VARSHNEY, A. Saliency-guided enhancement for volume vi-
sualization. IEEE Transactions on Visualization and Computer Graphics 12, 5
(2006), 925–932. A.3.1

[113] KINDLMANN, G., CHIW, C., SELTZER, N., SAMUELS, L., AND REPPY, J.
Diderot: A domain-specific language for portable parallel scientific visualization
and image analysis. IEEE Transactions on Visualization and Computer Graphics
22, 1 (2016), 867–876. 4.1, B.3.2, B.5

[114] KINDLMANN, G., AND SCHEIDEGGER, C. An algebraic process for visualiza-
tion design. IEEE Transactions on Visualization and Computer Graphics 20, 12
(2014), 2181–2190. 3.1, A.3.3

[115] KIRBY, R. M., KEEFE, D., AND LAIDLAW, D. H. Painting and visualization.
In The Visualization Handbook. Elsevier, 2005, pp. 873–891. 2.3

[116] KIRBY, R. M., MARMANIS, H., AND LAIDLAW, D. H. Visualizing multivalued
data from 2D incompressible flows using concepts from painting. In Proceedings
of IEEE VIS (1999), pp. 333–540. 2.3

[117] KLUYVER, T., RAGAN-KELLEY, B., PÉREZ, F., GRANGER, B. E., BUSSON-
NIER, M., FREDERIC, J., KELLEY, K., HAMRICK, J. B., GROUT, J., CORLAY,
S., ET AL. Jupyter notebooks – a publishing format for reproducible computa-
tional workflows. In Proceedings of ELPUB (2016), pp. 87–90. B.2

[118] KOENIG, M., SPINDLER, W., REXILIUS, J., JOMIER, J., LINK, F., AND PEIT-
GEN, H.-O. Embedding VTK and ITK into a visual programming and rapid
prototyping platform. In Proceedings of SPIE (2006), vol. 6141, pp. 796–806.
2.2, B.2

[119] KOLESÁR, I., BRUCKNER, S., VIOLA, I., AND HAUSER, H. A fractional
cartesian composition model for semi-spatial comparative visualization design.

D

140 BIBLIOGRAPHY

IEEE Transactions on Visualization and Computer Graphics 23, 1 (2016), 851–
860. 2.2

[120] KOOP, D., SCHEIDEGGER, C., CALLAHAN, S., FREIRE, J., AND SILVA, C.
Viscomplete: Data-driven suggestions for visualization systems. IEEE Transac-
tions on Visualization and Computer Graphics 14, 6 (2008), 1691–1698. 2.2

[121] KÖPP, W., AND WEINKAUF, T. Temporal Treemaps: Static visualization of
evolving trees. IEEE Transactions on Visualization and Computer Graphics 25,
1 (2019), 534–543. 3.3.2, C.1, C.2, C.3.2.3, C.6.1, C.7

[122] KOSARA, R. Visualization criticism-the missing link between information visu-
alization and art. In Proceedings of the International Conference on Information
Visualization (2007), pp. 631–636. 2.3

[123] KOSARA, R. An empire built on sand: Reexamining what we think we know
about visualization. In Proceedings of the BELIV Workshop (2016), pp. 162–168.
A.4

[124] KYPRIANIDIS, J. E., COLLOMOSSE, J., WANG, T., AND ISENBERG, T. State
of the “art”: A taxonomy of artistic stylization techniques for images and video.
IEEE Transactions on Visualization and Computer Graphics 19, 5 (2012), 866–
885. 2.3

[125] LAMPE, O. D., CORREA, C., MA, K.-L., AND HAUSER, H. Curve-centric
volume reformation for comparative visualization. IEEE Transactions on Visu-
alization and Computer Graphics 15, 6 (2009), 1235–1242. 2.2

[126] LANG, A. Aesthetics in information visualization. In Trends in Information
Visualization. University of Munich, 2010, pp. 8–14. 2.3

[127] LANZA, M. The evolution matrix: Recovering software evolution using soft-
ware visualization techniques. In Proceedings of the International Workshop on
Principles of Software Evolution (2001), pp. 37–42. B.2

[128] LARAMEE, R. Using visualization to debug visualization software. IEEE Com-
puter Graphics and Applications, 6 (2009), 67–73. B.1, B.3.1

[129] LAU, A., AND MOERE, A. V. Towards a model of information aesthetics in
information visualization. In Proceedings of the International Conference on
Information Visualization (2007), pp. 87–92. 2.3, A.3.4

[130] LEE, C. H., VARSHNEY, A., AND JACOBS, D. W. Mesh saliency. ACM Trans-
actions on Graphics 24, 3 (2005), 659–666. A.3.1

[131] LEIN, E. S., HAWRYLYCZ, M. J., AO, N., AYRES, M., BENSINGER, A.,
BERNARD, A., BOE, A. F., BOGUSKI, M. S., BROCKWAY, K. S., BYRNES,
E. J., ET AL. Genome-wide atlas of gene expression in the adult mouse brain.
Nature 445, 7124 (2007), 168–176. 4.5, 4.2

D

BIBLIOGRAPHY 141

[132] LI, Q., ZACHMANN, G., FENG, D., HUANG, K., AND MACHIRAJU, R. 2013
ieee scientific visualization contest winner: Observing genomics and phenotyp-
ical patterns in the developing mouse brain. IEEE Computer Graphics and Ap-
plications 34, 5 (2014), 88–97. 4.5, 4.2

[133] LI, Z. A neural model of contour integration in the primary visual cortex. Neural
Computation 10, 4 (1998), 903–940. A.3.1

[134] LIU, B., WUENSCHE, B., AND ROPINSKI, T. Visualization by example-a con-
structive visual component-based interface for direct volume rendering. In Pro-
ceedings of GRAPP (2010), pp. 254–259. 2.2

[135] LIU, S., WU, Y., WEI, E., LIU, M., AND LIU, Y. Storyflow: Tracking the
evolution of stories. IEEE Transactions on Visualization and Computer Graphics
19, 12 (2013), 2436–2445. 3.3.2, C.2, D.2, D.4

[136] LIU, Z., NERSESSIAN, N., AND STASKO, J. Distributed cognition as a theoreti-
cal framework for information visualization. IEEE Transactions on Visualization
and Computer Graphics 14, 6 (2008), 1173–1180. 3.1, A.3.3

[137] LUKASCZYK, J., WEBER, G., MACIEJEWSKI, R., GARTH, C., AND LEITTE,
H. Nested tracking graphs. Computer Graphics Forum 36, 3 (2017), 12–22.
3.3.1, C.1, C.2, C.6.1

[138] MA, K. Image graphs - A novel approach to visual data exploration. In Pro-
ceedings of IEEE VIS (1999), pp. 81–88. 2.1, B.2

[139] MACKINLAY, J. Automating the design of graphical presentations of relational
information. ACM Transactions on Graphics 5, 2 (1986), 110–141. 2.2, 3.1,
A.3.1, A.3.3

[140] MACKINLAY, J., HANRAHAN, P., AND STOLTE, C. Show me: Automatic pre-
sentation for visual analysis. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1137–1144. 2.2, A.3.1

[141] MALIK, M. M., HEINZL, C., AND GROELLER, M. E. Comparative visualiza-
tion for parameter studies of dataset series. IEEE Transactions on Visualization
and Computer Graphics 16, 5 (2010), 829–840. 2.2

[142] MARCUS, A., FENG, L., AND MALETIC, J. 3D representations for software
visualization. In Proceedings of ACM SOFTVIS (2003), pp. 27–36. B.2

[143] MARKS, J., BEARDSLEY, P., ANDALMAN, B., FREEMAN, W., GIBSON, S.,
HODGINS, J., KANG, T., MIRTICH, B., PFISTER, H., RUML, W., ET AL. De-
sign galleries: A general approach to setting parameters for computer graphics
and animation. In Proceedings of ACM SIGGRAPH (1997), pp. 389–400. 2.1,
3.2.1, 3.2.2, B.2

[144] MATZEN, L. E., HAASS, M. J., DIVIS, K. M., WANG, Z., AND WILSON,
A. T. Data visualization saliency model: A tool for evaluating abstract data
visualizations. IEEE Transactions on Visualization and Computer Graphics 24,
1 (2018), 563–573. A.3.1

D

142 BIBLIOGRAPHY

[145] MERINO, L., GHAFARI, M., AND NIERSTRASZ, O. Towards actionable visu-
alisation in software development. In Proceedings of IEEE VISSOFT (2016),
pp. 61–70. B.2

[146] MUNROE, R. Movie narrative charts, 2009. Diagram available at
https://xkcd.com/657. C.2, D.1

[147] MUNZNER, T. A nested model for visualization design and validation. IEEE
Transactions on Visualization and Computer Graphics 15, 6 (2009), 921–928.
A.1, A.1

[148] MUNZNER, T., GUIMBRETIÈRE, F., TASIRAN, S., ZHANG, L., AND ZHOU, Y.
TreeJuxtaposer: Scalable tree comparison using focus+ context with guaranteed
visibility. ACM Transactions on Graphics 22, 3 (2003), 453–462. C.2

[149] NEUMANN, P., SCHLECHTWEG, S., AND CARPENDALE, S. ArcTrees: Visual-
izing relations in hierarchical data. In Proceedings of EG/IEEE VGTC EuroVis
(2005), pp. 53–60. C.2

[150] OGAWA, M., AND MA, K.-L. Software evolution storylines. In Proceedings of
ACM SOFTVIS (2010), pp. 35–42. 3.3.2, B.2, D.2

[151] ONDOV, B., JARDINE, N., ELMQVIST, N., AND FRANCONERI, S. Face to
face: Evaluating visual comparison. IEEE Transactions on Visualization and
Computer Graphics 25, 1 (2018), 861–871. 2.2

[152] PAGENDARM, H.-G., AND POST, F. H. Comparative visualization: Approaches
and examples. In Visualization in Scientific Computing (1995), B. U. M. Göbel,
H. Müller, Ed., Springer, pp. 95—-108. 2.2

[153] PIMENTEL, J. F., FREIRE, J., BRAGANHOLO, V., AND MURTA, L. Tracking
and analyzing the evolution of provenance from scripts. In Proceedings of the
International Provenance and Annotation Workshop (2016), pp. 16–28. B.2

[154] PINEO, D., AND WARE, C. Data visualization optimization via computational
modeling of perception. IEEE Transactions on Visualization and Computer
Graphics 18, 2 (2012), 309–320. 3.1, A.3.1

[155] PINTO, Y., VAN DER LEIJ, A. R., SLIGTE, I. G., LAMME, V. A. F., AND
SCHOLTE, H. S. Bottom-up and top-down attention are independent. Journal
of Vision 13, 3 (2013), 16. A.3.1

[156] PURCHASE, H. Which aesthetic has the greatest effect on human understand-
ing? In Proceedings of the International Symposium on Graph Drawing (1997),
pp. 248–261. 3.1

[157] PURCHASE, H. C. Effective information visualisation: A study of graph draw-
ing aesthetics and algorithms. Interacting with Computers 13, 2 (2000), 147–
162. 1

D

BIBLIOGRAPHY 143

[158] PURCHASE, H. C., ANDRIENKO, N., JANKUN-KELLY, T., AND WARD, M.
Theoretical foundations of information visualization. In Information Visualiza-
tion. Springer, 2008, pp. 46–64. 3.1, A.3.3

[159] RAGAN, E. D., ENDERT, A., SANYAL, J., AND CHEN, J. Characterizing prove-
nance in visualization and data analysis: An organizational framework of prove-
nance types and purposes. IEEE Transactions on Visualization and Computer
Graphics 22, 1 (2015), 31–40. 2.2

[160] RAMIREZ GAVIRIA, A. When is information visualization art? Determining the
critical criteria. Leonardo 41, 5 (2008), 479–482. 2.3

[161] REN, L., CUI, J., DU, Y., AND DAI, G. Multilevel interaction model for
hierarchical tasks in information visualization. In Proceedings of the Interna-
tional Symposium on Visual Information Communication and Interaction (2013),
pp. 11–16. A.1

[162] RODIECK, R. Quantitative analysis of cat retinal ganglion cell response to visual
stimuli. Vision Research 5, 12 (1965), 583–601. A.3.1

[163] ROTH, S. F., KOLOJEJCHICK, J., MATTIS, J., AND GOLDSTEIN, J. Interactive
graphic design using automatic presentation knowledge. In Proceedings of ACM
CHI (1994), pp. 112–117. 2.2

[164] SACHA, D., STOFFEL, A., STOFFEL, F., KWON, B. C., ELLIS, G., AND
KEIM, D. A. Knowledge generation model for visual analytics. IEEE Transac-
tions on Visualization and Computer Graphics 20, 12 (2014), 1604–1613. A.4

[165] SAKET, B., ENDERT, A., AND STASKO, J. Beyond usability and performance:
A review of user experience-focused evaluations in visualization. In Proceedings
of the BELIV Workshop (2016), pp. 133–142. A.3.4

[166] SAKET, B., SCHEIDEGGER, C., AND KOBOUROV, S. Comparing node-link
and node-link-group visualizations from an enjoyment perspective. Computer
Graphics Forum 35, 3 (2016), 41–50. 3.1, A.3.4

[167] SAKET, B., SCHEIDEGGER, C., AND KOBOUROV, S. G. Towards Understand-
ing Enjoyment and Flow in Information Visualization. In Proceedings of EuroVis
(Short Papers) (2015). A.3.4

[168] SAMSEL, F., BARTRAM, L., AND BARES, A. Art affect and color: Creating
engaging expressive scientific visualization. In Proceedings of the IEEE VIS Arts
Program (2018), pp. 1–9. 2.3

[169] SANTOS, E., LINS, L., AHRENS, J., FREIRE, J., AND SILVA, C. Vismashup:
Streamlining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics 15, 6 (2009), 1539–1546. 2.2

[170] SATYANARAYAN, A., MORITZ, D., WONGSUPHASAWAT, K., AND HEER, J.
Vega-Lite: A grammar of interactive graphics. IEEE Transactions on Visualiza-
tion and Computer Graphics 23, 1 (2016), 341–350. 3.2.1, B.1, B.2, B.8

D

144 BIBLIOGRAPHY

[171] SCHEIDEGGER, C., VO, H., KOOP, D., FREIRE, J., AND SILVA, C. Querying
and creating visualizations by analogy. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1560–1567. 2.2, 2.5

[172] SCHMIDT, J., GRÖLLER, M. E., AND BRUCKNER, S. VAICo: Visual analy-
sis for image comparison. IEEE Transactions on Visualization and Computer
Graphics 19, 12 (2013), 2090–2099. 2.2

[173] SCHMIDT, J., PREINER, R., AUZINGER, T., WIMMER, M., GRÖLLER, M. E.,
AND BRUCKNER, S. YMCA - Your mesh comparison application. In Proceed-
ings of IEEE VAST (2014), pp. 153–162. 2.2

[174] SCHROEDER, W. J., LORENSEN, B., AND MARTIN, K. The visualization
toolkit: An object-oriented approach to 3D graphics. Kitware, 2004. 2.2, B.2

[175] SCHULZ, H. Treevis.net: A tree visualization reference. IEEE Computer Graph-
ics and Applications 31, 6 (2011), 11–15. A.1, A.1, C.1, C.2

[176] SCHULZ, H.-J., AND HADLAK, S. Preset-based generation and exploration of
visualization designs. Journal of Visual Languages & Computing 31 (2015),
9–29. 2.2, 2.6

[177] SEDLMAIR, M., HEINZL, C., BRUCKNER, S., PIRINGER, H., AND MÖLLER,
T. Visual parameter space analysis: A conceptual framework. IEEE Transac-
tions on Visualization and Computer Graphics 20, 12 (2014), 2161–2170. 2.1,
B.2

[178] SELIM, A., ELGHARIB, M., AND DOYLE, L. Painting style transfer for head
portraits using convolutional neural networks. ACM Transactions on Graphics
35, 4 (2016), 1–18. 2.3

[179] SHNEIDERMAN, B. The eyes have it: A task by data type taxonomy for informa-
tion visualizations. In Proceedings of the IEEE Symposium on Visual Languages
(1996), pp. 336–343. 1, A.1

[180] SHOEMAKE, K. ARCBALL: A user interface for specifying three-dimensional
orientation using a mouse. In Proceedings of Graphics Interface (1992),
pp. 151–156. B.4.3

[181] SILVA, C. T., ANDERSON, E., SANTOS, E., AND FREIRE, J. Using vistrails
and provenance for teaching scientific visualization. Computer Graphics Forum
30, 1 (2011), 75–84. 2.2

[182] SILVER, D. Object-oriented visualization. IEEE Computer Graphics and Ap-
plications 15, 3 (1995), 54–62. A.3.3

[183] SKAU, D., HARRISON, L., AND KOSARA, R. An evaluation of the impact of
visual embellishments in bar charts. Computer Graphics Forum 34, 3 (2015),
221–230. 3.1, A.3, A.3.4

D

BIBLIOGRAPHY 145

[184] SONDAG, M., SPECKMANN, B., AND VERBEEK, K. Stable treemaps via lo-
cal moves. IEEE Transactions on Visualization and Computer Graphics 24, 1
(2018), 729–738. C.1, C.2

[185] STAB, C., NAZEMI, K., AND FELLNER, D. W. SemaTime - Timeline visual-
ization of time-dependent relations and semantics. In Proceedings of the Inter-
national Symposium on Visual Computing (2010), pp. 514–523. C.2

[186] STITZ, H., GRATZL, S., PIRINGER, H., ZICHNER, T., AND STREIT, M.
KnowledgePearls: Provenance-based visualization retrieval. IEEE Transactions
on Visualization and Computer Graphics 25, 1 (2018), 120–130. B.2

[187] STOLL, C., GUMHOLD, S., AND SEIDEL, H.-P. Visualization with stylized
line primitives. In Proceedings of IEEE VIS (2005), pp. 695–702. B.6.2

[188] SUD, A., FISHER, D., AND LEE, H.-P. Fast dynamic Voronoi treemaps. In
Proceedings of the International Symposium on Voronoi Diagrams in Science
and Engineering (2010), pp. 85–94. C.1, C.2

[189] SUGIYAMA, K., TAGAWA, S., AND TODA, M. Methods for visual understand-
ing of hierarchical system structures. IEEE Transactions on Systems, Man, and
Cybernetics 11, 2 (1981), 109–125. D.2, D.4

[190] TAK, S., AND COCKBURN, A. Enhanced spatial stability with Hilbert and
Moore treemaps. IEEE Transactions on Visualization and Computer Graphics
19, 1 (2013), 141–148. C.1, C.2

[191] TAL, E. Measurement in science. In The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, 2017. A.2

[192] TANAHASHI, Y., AND MA, K.-L. Design considerations for optimizing story-
line visualizations. IEEE Transactions on Visualization and Computer Graphics
18, 12 (2012), 2679–2688. 3.3.2, 3.3.2, C.2, D.2

[193] TANG, T., RUBAB, S., LAI, J., CUI, W., YU, L., AND WU, Y. iStoryline:
Effective convergence to hand-drawn storylines. IEEE Transactions on Visual-
ization and Computer Graphics 25, 1 (2018), 769–778. 3.3.2, D.2

[194] TATEOSIAN, L. G., HEALEY, C. G., AND ENNS, J. T. Engaging viewers
through nonphotorealistic visualizations. In Proceedings of the International
Symposium on Non-Photorealistic Animation and Rendering (2007), pp. 93–
102. 2.3, 2.8

[195] TAYLOR, I., SHIELDS, M., WANG, I., AND HARRISON, A. Visual grid work-
flow in Triana. Journal of Grid Computing 3, 3–4 (2005), 153–169. B.2

[196] TELEA, A. Combining extended table lens and treemap techniques for visualiz-
ing tabular data. In Proceedings of EG/IEEE VGTC EuroVis (2006), pp. 51–58.
2.2

[197] TELEA, A., AND AUBER, D. Code flows: Visualizing structural evolution of
source code. Computer Graphics Forum 27, 3 (2008), 831–838. B.1, B.2

D

146 BIBLIOGRAPHY

[198] THERÓN, R. Hierarchical-temporal data visualization using a tree-ring
metaphor. In Proceedings of the International Symposium on Smart Graphics
(2006), pp. 70–81. C.2

[199] TORY, M., AND MÖLLER, T. Rethinking visualization: A high-level taxonomy.
In Proceedings of IEEE InfoVis (2004), pp. 151–158. A.1

[200] TORY, M., AND MÖLLER, T. Evaluating visualizations: Do expert reviews
work? IEEE Computer Graphics and Applications 25, 5 (2005), 8–11. 4.1, B.7

[201] TORY, M., POTTS, S., AND MÖLLER, T. A parallel coordinates style interface
for exploratory volume visualization. IEEE Transactions on Visualization and
Computer Graphics 11, 1 (2005), 71–80. 2.1

[202] TRACTINSKY, N., KATZ, A. S., AND IKAR, D. What is beautiful is usable.
Interacting with Computers 13, 2 (2000), 127–145. 2.3, A.3.4

[203] TU, Y., AND SHEN, H.-W. Visualizing changes of hierarchical data using tree-
maps. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007),
1286–1293. C.1, C.2

[204] TUFTE, E. R. The visual display of quantitative information, vol. 2. Graphics
press Cheshire, CT, 2001. 3.1, A.3.3

[205] TUKEY, J. W., AND TUKEY, P. A. Computer graphics and exploratory data
analysis: An introduction. In Proceedings of Computer Graphics (1985),
pp. 773–785. A.3.2

[206] VAN DEN ELZEN, S., AND VAN WIJK, J. J. Small multiples, large singles: A
new approach for visual data exploration. Computer Graphics Forum 32, 3pt2
(2013), 191–200. 2.2, 2.1

[207] VAN HEES, R., AND HAGE, J. Stable and predictable Voronoi treemaps for
software quality monitoring. Information and Software Technology 87 (2017),
242–258. C.1, C.2

[208] VAN WIJK, J. J. The value of visualization. In Proceedings of IEEE VIS (2005),
pp. 79–86. A.3.4

[209] VAN WIJK, J. J., AND VAN DE WETERING, H. Cushion treemaps: Visualiza-
tion of hierarchical information. In Proceedings of IEEE InfoVis (1999), pp. 73–
78. 3.3.2

[210] VERMA, V., AND PANG, A. Comparative flow visualization. IEEE Transactions
on Visualization and Computer Graphics 10, 6 (2004), 609–624. 2.2

[211] VERNIER, E., SONDAG, M., COMBA, J., SPECKMANN, B., TELEA, A., AND
VERBEEK, K. Quantitative comparison of time-dependent treemaps. Computer
Graphics Forum (2020). 3.1, 4.2, C.2, C.4.5, C.5.2

D

BIBLIOGRAPHY 147

[212] VICKERS, P., FAITH, J., AND ROSSITER, N. Understanding visualization: A
formal approach using category theory and semiotics. IEEE Transactions on
Visualization and Computer Graphics 19, 6 (2012), 1048–1061. A.3.3

[213] VIÉGAS, F. B., AND WATTENBERG, M. Artistic data visualization: Beyond vi-
sual analytics. In Proceedings of the International Conference on Online Com-
munities and Social Computing (2007), pp. 182–191. 2.3

[214] VOIGT, M., PIETSCHMANN, S., GRAMMEL, L., AND MEISSNER, K. Context-
aware recommendation of visualization components. In Proceedings of the In-
ternational Conference on Information, Process, and Knowledge Management
(2012), pp. 101–109. 2.2

[215] VOINEA, L., TELEA, A., AND VAN WIJK, J. J. CVSscan: visualization of code
evolution. In Proceedings of ACM SOFTVIS (2005), pp. 47–56. B.1, B.2

[216] WANG, C., AND SHEN, H.-W. Information theory in scientific visualization.
Entropy 13, 1 (2011), 254–273. A.3.3

[217] WANG, X., DOU, W., BUTKIEWICZ, T., BIER, E. A., AND RIBARSKY, W.
A two-stage framework for designing visual analytics system in organizational
environments. In Proceedings of IEEE VAST (2011), pp. 251–260. A.1

[218] WATTENBERG, M., AND KRISS, J. Designing for social data analysis. IEEE
Transactions on Visualization and Computer Graphics 12, 4 (2006), 549–557.
C.2

[219] WETTEL, R., AND LANZA, M. Visual exploration of large-scale system evolu-
tion. In Proceedings of the Working Conference on Reverse Engineering (2008),
pp. 219–228. B.2

[220] WILKINSON, L., ANAND, A., AND GROSSMAN, R. Graph-theoretic scagnos-
tics. In Proceedings of IEEE InfoVis (2005), pp. 157–164. A.3.2

[221] WILLIAMSON, J. R., AND GROSSBERG, S. A neural model of how horizon-
tal and interlaminar connections of visual cortex develop into adult circuits that
carry out perceptual grouping and learning. Cerebral Cortex 11, 1 (2001), 37–
58. A.3.1

[222] WINKENBACH, G., AND SALESIN, D. H. Computer-generated pen-and-ink
illustration. In Proceedings of ACM SIGGRAPH (1994), pp. 91–100. 2.3

[223] WITTENHAGEN, M., CHEREK, C., AND BORCHERS, J. Chronicler: Interac-
tive exploration of source code history. In Proceedings of ACM CHI (2016),
pp. 3522–3532. 3.3.1, B.1, B.2, C.1, C.2, C.3.2.2, C.6.1

[224] WONGSUPHASAWAT, K., AND GOTZ, D. Exploring flow, factors, and outcomes
of temporal event sequences with the outflow visualization. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2659–2668. C.2

D

148 BIBLIOGRAPHY

[225] WONGSUPHASAWAT, K., MORITZ, D., ANAND, A., MACKINLAY, J., HOWE,
B., AND HEER, J. Towards a general-purpose query language for visualization
recommendation. In Proceedings of the Workshop on Human-In-the-Loop Data
Analytics (2016), pp. 1–6. 2.2

[226] WOOD, J., KACHKAEV, A., AND DYKES, J. Design exposition with literate
visualization. IEEE Transactions on Visualization and Computer Graphics 25,
1 (2019), 759–768. B.2

[227] WOODRING, J., AND SHEN, H.-W. Multi-variate, time varying, and compara-
tive visualization with contextual cues. IEEE Transactions on Visualization and
Computer Graphics 12, 5 (2006), 909–916. 2.2

[228] WU, Y., XU, A., CHAN, M.-Y., QU, H., AND GUO, P. Palette-style volume vi-
sualization. In Proceedings of the EG/IEEE International Symposium on Volume
Graphics (2007), pp. 33–40. 2.2

[229] XU, L., LEE, T.-Y., AND SHEN, H.-W. An information-theoretic frame-
work for flow visualization. IEEE Transactions on Visualization and Computer
Graphics 16, 6 (2010), 1216–1224. 3.1, A.3.3

[230] XU, P., WU, Y., WEI, E., PENG, T.-Q., LIU, S., ZHU, J. J., AND QU, H.
Visual analysis of topic competition on social media. IEEE Transactions on
Visualization and Computer Graphics 19, 12 (2013), 2012–2021. D.2

[231] ZHANG, C., SCHULTZ, T., LAWONN, K., EISEMANN, E., AND VILANOVA,
A. Glyph-based comparative visualization for diffusion tensor fields. IEEE
Transactions on Visualization and Computer Graphics 22, 1 (2015), 797–806.
2.2

[232] ZHI, J., AND RUHE, G. DEVis: a tool for visualizing software document evo-
lution. In Proceedings of IEEE VISSOFT (2013), pp. 1–4. B.2

[233] ZHOU, H., CHEN, M., AND WEBSTER, M. F. Comparative evaluation of visu-
alization and experimental results using image comparison metrics. In Proceed-
ings of IEEE VIS (2002), pp. 315–322. 2.2

[234] ZHOU, M. X., AND CHEN, M. Automated generation of graphic sketches by
example. In Proceedings of the International Joint Conference on Artificial In-
telligence (2003), vol. 3, pp. 65–71. 2.2

	Scientific Environment
	Acknowledgements
	Abstract
	List of Papers
	I Overview
	Introduction
	Problem Statement
	Scope and Contributions
	Thesis Structure

	State of the Art
	Parameter Space Exploration
	Visualization Space Exploration
	Arts and Aesthetics in Visualization

	Contributions
	Theory of Visualization Assessment
	Visualization for Visualization Developers
	Automatic Compilation and Version Control
	Visual Exploration of Visualization Algorithms

	Stream-based Visualization and Aesthetics
	Visualization Interpolation for Dynamic Hierarchies
	Aesthetics in Stream-Based Visualizations

	Demonstration Cases
	Exploration of Visualization Source Code
	Visualization of Dynamic Hierarchies
	Aesthetics in Storyline Visualization

	Conclusion and Future Work

	II Scientific Results
	Measures in Visualization Space
	Introduction
	Measurement in Science
	Types of Visualization Measures
	Measures of Perceptual Characteristics
	Task-Oriented Quality Measures
	Structure-Oriented Measures
	Meta-Perceptual Process Measures

	Towards a "Bigger Picture"
	Conclusion

	Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution
	Introduction
	Related Work
	Overview
	User and Task Requirements
	System Design

	Exploring Visualization Source Code
	Automatic Revision Management
	Visualization of Algorithm Evolution
	Parameter Management
	System Interactions

	Implementation
	Usage Examples
	Flow Visualization
	Stylized Line Primitives

	Evaluation
	Discussion
	Conclusion
	Acknowledgements

	SplitStreams: A Visual Metaphor for Evolving Hierarchies
	Introduction
	Related Work
	Overview
	Data
	Visual Encoding

	SplitStream Generation
	Hierarchy-Change Ratio
	Splits and X-Margins
	Y-Padding and Y-Margin
	Algorithm
	Implementation

	Use Cases
	MeSH Taxonomy
	Leaflet Github

	Evaluation
	Motivation
	Hypotheses and Goals
	Experiment Design and Task
	Participants and Procedure
	Results

	Discussion
	Conclusion
	Acknowledgements

	Organic Narrative Charts
	Introduction
	Related Work
	Overview
	Method
	Discussion and Limitations
	Conclusion

